1.) The solution to $y^{\prime \prime}+16 y=36 \cos (2 t)$ is $y=c_{1} \cos (4 t)+c_{2} \sin (4 t)+3 \cos (2 t)$

Use this fact to answer the following two questions.
[5] 1a.) Guess a possible non-homog soln for the following differential equation (do not solve): $\quad y^{\prime \prime}+16 y=3 \sin (4 t)-e^{4 t}$
[3] 1b.) The general solution to $y^{\prime \prime}+16 y=36 \cos (2 t)+32$ is
2.) Circle T for true and F for false.
[2] 2a.) $L(f)=a f^{\prime \prime}+b f^{\prime}+c f$ is a linear function on the space of all twice differentiable functions.
[2] 2b.) $L(f)=a f^{\prime \prime}+b f^{\prime}+c f^{2}$ is a linear function on the space of all twice differentiable functions.

T F
[2] 2c.) Suppose $y=\phi_{1}(t)$ and $y=\phi_{2}(t)$ are solutions to $a y^{\prime \prime}+b y^{\prime}+c y=0$,
$y=\psi_{1}(t)$ is a solution to $a y^{\prime \prime}+b y^{\prime}+c y=g_{1}(t)$, and
$y=\psi_{2}(t)$ is a solution to $a y^{\prime \prime}+b y^{\prime}+c y=g_{2}(t)$, then the general solution to
$a y^{\prime \prime}+b y^{\prime}+c y=g_{1}(t)+g_{2}(t)$ is $y=c_{1} \phi_{1}(t)+c_{2} \phi_{2}(t)+\psi_{1}(t)+\psi_{2}(t)$.
[2] 2d.) $\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{j=0}^{\infty}(j+2)(j+1) a_{j+2} x^{j}=\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}$
[2] 2e.) Suppose $f(x)=\Sigma a_{n}(x-3)^{n}$ has a radius of convergence $=r$ about the point $x_{0}=3$. Then we can define the domain of f to be $(3-r, 3+r)$.
[2] 2f.) Suppose $f(x)=\Sigma a_{n}(x+1)^{n}$ has a radius of convergence $=4$ about the point $x_{0}=-1$. Then we can define the domain of f to be $(-5,3)$.

