Quiz 3 SHOW ALL WORK

1.) The solution to $y'' + 16y = 36\cos(2t)$ is $y = c_1\cos(4t) + c_2\sin(4t) + 3\cos(2t)$ Use this fact to answer the following two questions.

[5] 1a.) Guess a possible non-homog soln for the following differential equation (do not solve): $y'' + 16y = 3sin(4t) - e^{4t}$

Guess $y = t[Asin(4t) + Bcos(4t)] + Ce^{4t}$

For explanations and examples,

see http://homepage.divms.uiowa.edu/ $\sim idarcy/COURSES/100/3_5listSans.pdf and http://homepage.divms.uiowa.edu/<math display="inline">\sim idarcy/COURSES/100/3_5exA.pdf$

[3] 1b.) The general solution to $y'' + 16y = 36\cos(2t) + 32$ is

$$y = c_1 cos(4t) + c_2 sin(4t) + 3cos(2t) + 2$$

See http://homepage.divms.uiowa.edu/~idarcy/COURSES/100/FALL18/18_10_15.pdf

2.) Circle T for true and F for false.

[2] 2a.) L(f) = af'' + bf' + cf is a linear function on the space of all twice differentiable functions. T

[2] 2b.) $L(f) = af'' + bf' + cf^2$ is a linear function on the space of all twice differentiable functions.

[2] 2c.) Suppose $y = \phi_1(t)$ and $y = \phi_2(t)$ are solutions to ay'' + by' + cy = 0, $y = \psi_1(t)$ is a solution to $ay'' + by' + cy = g_1(t)$, and $y = \psi_2(t)$ is a solution to $ay'' + by' + cy = g_2(t)$, then the **general** solution to $ay'' + by' + cy = g_1(t) + g_2(t)$ is $y = c_1\phi_1(t) + c_2\phi_2(t) + \psi_1(t) + \psi_2(t)$.

[2] 2c.) Suppose $y = \phi_1(t)$ and $y = \phi_2(t)$ are solutions to ay'' + by' + cy = 0, $y = \psi_1(t)$ is a solution to $ay'' + by' + cy = g_1(t)$, and $y = \psi_2(t)$ is a solution to $ay'' + by' + cy = g_2(t)$, then $y = c_1\phi_1(t) + c_2\phi_2(t) + \psi_1(t) + \psi_2(t)$ is also a solution to $ay'' + by' + cy = g_1(t) + g_2(t)$.

[2] 2c.) Suppose $y = \phi_1(t)$ and $y = \phi_2(t)$ are linearly **independent solutions** to ay'' + by' + cy = 0, $y = \psi_1(t)$ is a solution to $ay'' + by' + cy = g_1(t)$, and $y = \psi_2(t)$ is a solution to $ay'' + by' + cy = g_2(t)$, then the general solution to $ay'' + by' + cy = g_1(t) + g_2(t)$ is $y = c_1\phi_1(t) + c_2\phi_2(t) + \psi_1(t) + \psi_2(t)$. T

Note for 2c, I forgot to include linearly independent, so if lost 2 points because I graded your problem incorrectly, please let me know.

 \mathbf{F}

Т

[2] 2d.)
$$\sum_{n=2}^{\infty} n(n-1)a_n x^{n-2} = \sum_{j=0}^{\infty} (j+2)(j+1)a_{j+2}x^j = \sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2}x^n$$

T

[2] 2e.) Suppose $f(x) = \sum a_n (x-3)^n$ has a radius of convergence = r about the point $x_0 = 3$. Then we can define the domain of f to be (3 - r, 3 + r).

[2] 2f.) Suppose $f(x) = \sum a_n (x+1)^n$ has a radius of convergence = 4 about the point $x_0 = -1$. Then we can define the domain of f to be (-5,3). T