Quiz 4 SHOW ALL WORK
Nov 9, 2018
[15] 1.) Solve $t y^{\prime}+4 y=t$
$1 y^{\prime}+\frac{4}{t} y=1$
$u(t)=e^{\int \frac{4}{t} d t}=e^{4 l n|t|}=e^{\ln \left(|t|^{4}\right)}=t^{4}$.
Let $u(t)=t^{4}$
$t^{4} y^{\prime}+4 t^{3} y=t^{4}$
$\left(t^{4} y\right)^{\prime}=t^{4} \quad$ Check this step: $\left(t^{4} y\right)^{\prime}=t^{4} y^{\prime}+4 t^{3} y$
$\int\left(t^{4} y\right)^{\prime} d t=\int t^{4} d t$
$t^{4} y=\frac{t^{5}}{5}+C$
$y=\frac{t}{5}+C t^{-4}$

Answer: $y=\frac{t}{5}+C t^{-4}$
2.) Give that the solution to $\mathbf{x}^{\prime}=\left[\begin{array}{ll}1 & 2 \\ 3 & 0\end{array}\right] \mathbf{x} \quad$ is $\quad \mathbf{x}=c_{1}\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{3 t}+c_{2}\left[\begin{array}{c}-2 \\ 3\end{array}\right] e^{-2 t}$

Note c1 = 0 and c2 $=1$ for this IVP.
[7] 2a.) Graph the solution to the IVP $\left[\begin{array}{l}x_{1}(0) \\ x_{2}(0)\end{array}\right]=\left[\begin{array}{c}-2 \\ 3\end{array}\right]$ in the Thus $x 1=-2 \mathrm{e}^{-2 \mathrm{t}}$ and $\mathrm{x} 2=3 \mathrm{e}^{-2 \mathrm{t}}$ t, x_{1}-plane $\mathrm{x} 1=-2 \mathrm{e}^{-2 \mathrm{t}}$
t, x_{2}-plane $\times 2=3 e^{-2 t}$

[3] 2b.) Graph the solution to the IVP $\left[\begin{array}{l}x_{1}(0) \\ x_{2}(0)\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$ in the
t, x_{1}-plane

t, x_{2}-plane

Note c1 = $0=c 2$ for this IVP. Thus
x_{1}, x_{2}-plane $\mathrm{x} 1=0$ and $\mathrm{x} 2=0$ for all t. Thus we have the constant solution where
$(x 1(t), x 2(t))=(0,0)$
for all t

$[2]$ 2c.) The equilibrium solution for this system of equations is $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$.
[3] 2d.) $\frac{d x_{2}}{d x_{1}}=\frac{3 \times 1}{1 \times 1+2 \times 2}$
[2] 2e.) Plot several direction vectors where the slope is 0 and where slope is vertical.
[10] 2f.) Graph several trajectories.

