Each assignment worth 10 points

- A. 7 points for completion,
- B. 3 points for the chosen graded problem: section 1.1 #10 The chosen problem to be graded should be on the first page and clearly identified (with a box, high-lighted, etc.).

Use a low but readable resolution (high resolutions take too long to open in ICON). Can include several pages in one image.

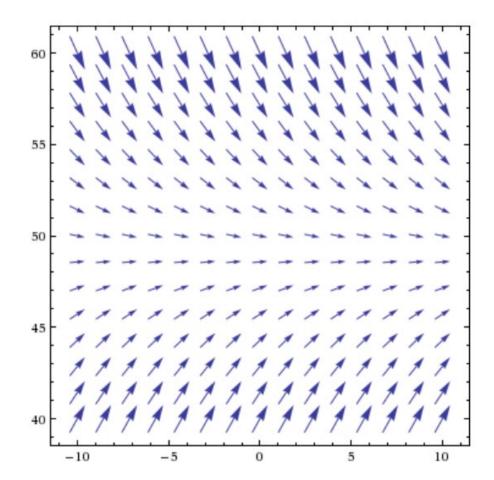
Assignments officially due on Fridays at 11:59 PM, but can still be submitted late through Sunday at 11:59.

Late policy: -3 points per day, allowing for minimum of 4 points as long as something reasonable is uploaded by Sunday even if incomplete.

File uploads restricted to .pdf files (other file types may not be compatible with ICON).

1.1: Examples of differentiable equation:

1.) Ball example: $F = ma = m\frac{dv}{dt} = mg - \gamma v$



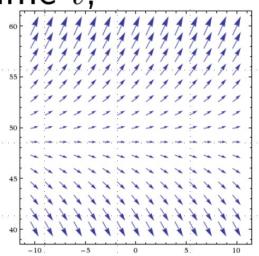
2.) Mouse population increases at a rate proportional to the current population:

Model :
$$\frac{dp}{dt} = rp - k$$

where $p(t) =$ mouse population at time t ,
 $r =$ growth rate or rate constant,
 $k =$ predation rate = # mice killed per unit time.

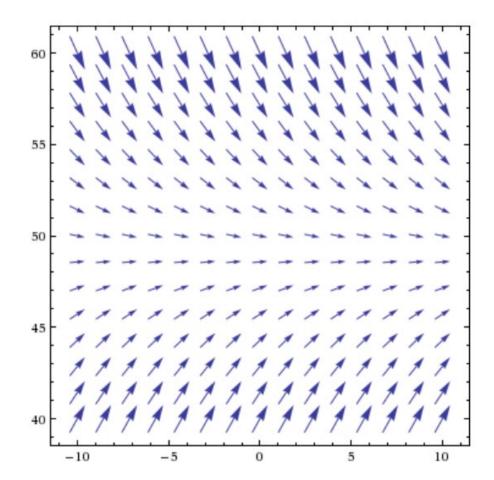
3.) Continuous compounding $\frac{dS}{dt} = rS + k$ where S(t) = amount of money at time t, r = interest rate,

k = constant deposit rate



1.1: Examples of differentiable equation:

1.) Ball example: $F = ma = m\frac{dv}{dt} = mg - \gamma v$



$F_g = \text{Gravitational force} = -mg$

IF the positive direction points up.

Note in some examples in the book, the positive direction points down ($F_g = +mg$) while in other examples in the book, the positive direction points up ($F_g = -mg$)

2.3: Modeling with differential equations.

Ex.:
$$F = ma = mv' = m\frac{dv}{dt}$$

x = position

$$v = velocity = x'$$

$$a = \operatorname{acceleration} = v' = x''$$

t = independent variable,

x, v, a = dependent variables

m = mass mg = weight

Calc 1 review

Model 1: Falling ball near earth, neglect air resistance.

$$F_g = \text{Gravitational force} = -mg$$

$$mv' = -mg$$
 implies $v' = -g$.
 $\frac{dv}{dt} = g \implies dv$

Thus
$$v = -gt + C$$
.

IVP: $v(0) = v_0$:

 $v_0 = -g(0) + C$ implies $C = v_0$. Thus $v = -gt + v_0$

= gdt

Calc 1 review (continued)

 $x' = v = -gt + v_0$ implies $x = -\frac{1}{2}gt^2 + v_0t + C$. IVP: $x(0) = x_0$: $x_0 = -\frac{1}{2}g(0)^2 + v_0(0) + C$ implies $C = x_0$. Thus $x = -\frac{1}{2}gt^2 + v_0t + x_0$. Note v = 0 when ball reaches maximum height. If ball is dropped (as opposed to thrown up or down), then v(0) = 0.

Differential equations (improved model)

Model 2: Falling ball near earth, include air resistance.

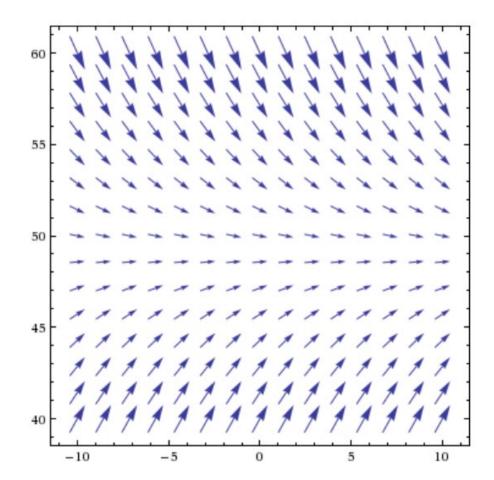
Let A(v) = the force due to air resistance. $mv' = F_g + R(v) = -mg + A(v)$ Example from section 1.1 (but with positive direction pointing up:

If air resistance proportional to velocity, then $A(v) = \gamma v$

If
$$\gamma \geq 0$$
, then $mv' = F_g + R(v) = -mg - \gamma v$

1.1: Examples of differentiable equation:

1.) Ball example: $F = ma = m\frac{dv}{dt} = mg - \gamma v$



Model 3: Far from earth (no air resistance).

 $F_g = -mg \frac{R^2}{(R+x)^2}$ where R = radius of the earth. If x is small, $\frac{R^2}{(R+x)^2} \sim 1$ and thus $F_g \sim -mg$ when close to earth.

For large x, $mv' = -mg \frac{R^2}{(R+x)^2}$ where R constant.

 $\frac{dv}{dt} = -g \frac{R^2}{(R+x)^2}$ with 3 variables: v, t, xTo eliminate one variable: $\frac{dv}{dt} = \frac{dv}{dx} \frac{dx}{dt} = v \frac{dv}{dx}$ Note this trick can also be used to simplify some problems.