Each assignment worth 10 points
A. 7 points for completion,
B. 3 points for the chosen graded problem: section 1.1 \#10 The chosen problem to be graded should be on the first page and clearly identified (with a box, high-lighted, etc.).

Use a low but readable resolution (high resolutions take too long to open in ICON). Can include several pages in one image.

Assignments officially due on Fridays at 11:59 PM, but can still be submitted late through Sunday at 11:59.

Late policy: -3 points per day, allowing for minimum of 4 points as long as something reasonable is uploaded by Sunday even if incomplete.

File uploads restricted to .pdf files (other file types may not be compatible with ICON).

1.1: Examples of differentiable equation:

1.) Ball example: $F=m a=m \frac{d v}{d t}=m g-\gamma v$

2.) Mouse population increases at a rate proportional to the current population:

Model : $\frac{d p}{d t}=r p-k$
where $p(t)=$ mouse population at time t,
$r=$ growth rate or rate constant,
$k=$ predation rate $=\#$ mice killed per unit time.
3.) Continuous compounding $\frac{d S}{d t}=r S+k$ where $S(t)=$ amount of money at time t,
$r=$ interest rate,
$k=$ constant deposit rate

1.1: Examples of differentiable equation:

1.) Ball example: $F=m a=m \frac{d v}{d t}=m g-\gamma v$

$F_{g}=$ Gravitational force $=-m g$
IF the positive direction points up.
Note in some examples in the book, the positive direction points down $\left(F_{g}=+m g\right)$ while in other examples in the book, the positive direction points $\operatorname{up}\left(F_{g}=-m g\right)$
2.3: Modeling with differential equations.

Ex.: $F=m a=m v^{\prime}=m \frac{d v}{d t}$
$x=$ position
$v=$ velocity $=x^{\prime}$
$a=$ acceleration $=v^{\prime}=x^{\prime \prime}$
$t=$ independent variable,
$x, v, a=$ dependent variables
$m=$ mass
$m g=$ weight

Calc 1 review
Model 1: Falling ball near earth, neglect air resistance.
$F_{g}=$ Gravitational force $=-m g$
$m v^{\prime}=-m g$ implies $v^{\prime}=-g$.

$$
\frac{d v}{d t}=g \Longrightarrow d v=g d t
$$

Thus $v=-g t+C$.
IVP: $v(0)=v_{0}$:
$v_{0}=-g(0)+C$ implies $C=v_{0}$. Thus $v=-g t+v_{0}$

Calc 1 review (continued)
$x^{\prime}=v=-g t+v_{0}$ implies $x=-\frac{1}{2} g t^{2}+v_{0} t+C$.
IVP: $x(0)=x_{0}$:

$$
x_{0}=-\frac{1}{2} g(0)^{2}+v_{0}(0)+C \text { implies } C=x_{0} .
$$

Thus $x=-\frac{1}{2} g t^{2}+v_{0} t+x_{0}$.
Note $v=0$ when ball reaches maximum height.
If ball is dropped (as opposed to thrown up or down $)$, then $v(0)=0$.

Differential equations (improved model)

Model 2: Falling ball near earth, include air resistance.

Let $A(v)=$ the force due to air resistance.
$m v^{\prime}=F_{g}+R(v)=-m g+A(v)$
Example from section 1.1 (but with positive direction pointing up:

If air resistance proportional to velocity, then $A(v)=\gamma v$
If $\gamma \geq 0$, then $m v^{\prime}=F_{g}+R(v)=-m g-\gamma v$

1.1: Examples of differentiable equation:

1.) Ball example: $F=m a=m \frac{d v}{d t}=m g-\gamma v$

Model 3: Far from earth (no air resistance).
$F_{g}=-m g \frac{R^{2}}{(R+x)^{2}}$ where $R=$ radius of the earth.
If x is small, $\frac{R^{2}}{(R+x)^{2}} \sim 1$ and thus $F_{g} \sim-m g$ when close to earth.

For large $x, m v^{\prime}=-m g \frac{R^{2}}{(R+x)^{2}}$ where R constant.
$\frac{d v}{d t}=-g \frac{R^{2}}{(R+x)^{2}}$ with 3 variables: v, t, x
To eliminate one variable: $\frac{d v}{d t}=\frac{d v}{d x} \frac{d x}{d t}=v \frac{d v}{d x}$
Note this trick can also be used to simplify some problems.

