Consequence 2: If ψ_1 is a solution to af'' + bf' + cf = hand ψ_2 is a solution to af'' + bf' + cf = k, then $3\psi_1 + 5\psi_2$ is a solution to af'' + bf' + cf = 3h + 5k, Since ψ_1 is a solution to af'' + bf' + cf = h, $L(\psi_1) = h$. Since ψ_2 is a solution to af'' + bf' + cf = k, $L(\psi_2) = k$. Hence $L(3\psi_1 + 5\psi_2) = 3L(\psi_1) + 5L(\psi_2)$ = 3h + 5k.

Thus $3\psi_1 + 5\psi_2$ is also a solution to af'' + bf' + cf = 3h + 5k Thm: Suppose $c_1\phi_1(t) + c_2\phi_2(t)$ is a general solution to ay'' + by' + cy = 0,

If ψ is a solution to

$$ay'' + by' + cy = g(t) \ [*],$$

Then $\psi + c_1\phi_1(t) + c_2\phi_2(t)$ is also a solution to [*].

Moreover if γ is also a solution to [*], then there exist constants c_1, c_2 such that

$$\gamma = \psi + c_1\phi_1(t) + c_2\phi_2(t)$$

Or in other words, $\psi + c_1\phi_1(t) + c_2\phi_2(t)$ is a general solution to [*].

Proof:

Define
$$L(f) = af'' + bf' + cf$$
.

Recall L is a linear function.

Since $c_1\phi_1(t) + c_2\phi_2(t)$ is a solution to the differential equation, ay'' + by' + cy = 0,

Since ψ is a solution to ay'' + by' + cy = g(t),

We will now show that $\psi + c_1\phi_1(t) + c_2\phi_2(t)$ is also a solution to [*].

Claim:
$$c_1\phi_1(t) + c_2\phi_2(t)$$
 is a general solution to
 $ay'' + by' + cy = 0,$

Since γ a solution to ay'' + by' + cy = g(t),

We will first show that $\gamma - \psi$ is a solution to the differential equation ay'' + by' + cy = 0.

Since $\gamma - \psi$ is a solution to ay'' + by' + cy = 0 and $c_1\phi_1(t) + c_2\phi_2(t)$ is a general solution to ay'' + by' + cy = 0,

there exist constants c_1, c_2 such that

$$\gamma - \psi =$$

Thus $\gamma = \psi + c_1 \phi_1(t) + c_2 \phi_2(t)$.

Thm:

Suppose f_1 is a solution to $ay'' + by' + cy = g_1(t)$ and f_2 is a solution to $ay'' + by' + cy = g_2(t)$, then $f_1 + f_2$ is a solution to $ay'' + by' + cy = g_1(t) + g_2(t)$

Proof: Let L(f) = af'' + bf' + cf.

Since f_1 is a solution to $ay'' + by' + cy = g_1(t)$,

Since f_2 is a solution to $ay'' + by' + cy = g_2(t)$,

We will now show that $f_1 + f_2$ is a solution to $ay'' + by' + cy = g_1(t) + g_2(t).$

Sidenote: The proofs above work even if a, b, c are functions of t instead of constants.

To solve $ay'' + by' + cy = g_1(t) + g_2(t) + \dots + g_n(t)$ [**]

1.) Find the general solution to ay'' + by' + cy = 0: $c_1\phi_1 + c_2\phi_2$

2.) For each g_i , find a solution to $ay'' + by' + cy = g_i$: ψ_i

This includes plugging guessed solution ψ_i into $ay'' + by' + cy = g_i$.

The general solution to [**] is

$$c_1\phi_1 + c_2\phi_2 + \psi_1 + \psi_2 + \dots \psi_n$$

3.) If initial value problem:

Once general solution is known, can solve initial value problem (i.e., use initial conditions to find c_1, c_2).

Solve y'' - 4y' - 5y = 4sin(3t), y(0) = 6, y'(0) = 7. 1.) First solve homogeneous equation: Find the general solution to y'' - 4y' - 5y = 0: Guess $y = e^{rt}$ for HOMOGENEOUS equation: $y' = re^{rt}, \ y' = r^2 e^{rt}$ y'' - 4y' - 5y = 0 $r^2 e^{rt} - 4r e^{rt} - 5e^{rt} = 0$ $e^{rt}(r^2 - 4r - 5) = 0$ $e^{rt} \neq 0$, thus can divide both sides by e^{rt} : $r^2 - 4r - 5 = 0$ (r+1)(r-5) = 0. Thus r = -1, 5.

Thus $y = e^{-t}$ and $y = e^{5t}$ are both solutions to LINEAR HOMOGENEOUS equation.

Thus the general solution to the 2nd order LINEAR HOMOGENEOUS equation is

$$y = c_1 e^{-t} + c_2 e^{5t}$$

2.) Find one solution to non-homogeneous eq'n: Find a solution to ay'' + by' + cy = 4sin(3t):

Guess
$$y = Asin(3t) + Bcos(3t)$$

 $y' = 3Acos(3t) - 3Bsin(3t)$
 $y'' = -9Asin(3t) - 9Bcos(3t)$

 $y'' - 4y' - 5y = 4\sin(3t)$

-9Asin(3t)	—	9Bcos(3t)		
12Bsin(3t)		12Acos(3t)		
-5Asin(3t)		5cos(3t)		
(12B - 14A)sin(3t)	_	(-14B - 12A)cos(3t)	=	4sin(3t)

Since $\{sin(3t), cos(3t)\}$ is a linearly independent set:

12B - 14A = 4 and -14B - 12A = 0Thus $A = -\frac{14}{12}B = -\frac{7}{6}B$ and $12B - 14(-\frac{7}{6}B) = 12B + 7(\frac{7}{3}B) = \frac{36+49}{3}B = \frac{85}{3}B = 4$ Thus $B = 4(\frac{3}{85}) = \frac{12}{85}$ and $A = -\frac{7}{6}B = -\frac{7}{6}(\frac{12}{85}) = -\frac{14}{85}$ Thus $y = (-\frac{14}{85})sin(3t) + \frac{12}{85}cos(3t)$ is one solution to the nonhomogeneous equation.

Thus the general solution to the 2nd order linear nonhomogeneous

equation is

$$y = c_1 e^{-t} + c_2 e^{5t} - \left(\frac{14}{85}\right) \sin(3t) + \frac{12}{85} \cos(3t)$$

3.) If initial value problem:

Once general solution is known, can solve initial value problem (i.e., use initial conditions to find c_1, c_2).

NOTE: you must know the GENERAL solution to the ODE BEFORE you can solve for the initial values. The homogeneous solution and the one nonhomogeneous solution found in steps 1 and 2 above do NOT need to separately satisfy the initial values.

Solve
$$y'' - 4y' - 5y = 4sin(3t)$$
, $y(0) = 6$, $y'(0) = 7$.
General solution: $y = c_1 e^{-t} + c_2 e^{5t} - (\frac{14}{85})sin(3t) + \frac{12}{85}cos(3t)$
Thus $y' = -c_1 e^{-t} + 5c_2 e^{5t} - (\frac{42}{85})cos(3t) - \frac{36}{85}sin(3t)$
 $y(0) = 6$: $6 = c_1 + c_2 + \frac{12}{85}$
 $y'(0) = 7$: $7 = -c_1 + 5c_2 - \frac{42}{85}$
 $6c_2 = \frac{498 + 637}{85} = \frac{1135}{85} = \frac{227}{17}$. Thus $c_2 = \frac{227}{102}$.
 $c_1 = \frac{498}{85} - c_2 = \frac{498}{85} - \frac{227}{102} = \frac{2988 - 1135}{510} = \frac{1853}{510} = \frac{109}{30}$
Thus $y = (\frac{109}{30})e^{-t} + (\frac{227}{102})e^{5t} - (\frac{14}{85})sin(3t) + \frac{12}{85}cos(3t)$.

Partial Check: $y(0) = (\frac{109}{30}) + (\frac{227}{102}) + \frac{12}{85} = 6.$ $y'(0) = -\frac{109}{30} + 5(\frac{227}{102}) - \frac{42}{85} = 7.$

 $(e^{-t})'' - 4(e^{-t})' - 5(e^{-t}) = 0$ and $(e^{5t})'' - 4(e^{5t})' - 5(e^{5t}) = 0$

Examples: Find a suitable form for ψ for the following differential equations:

1.)
$$y'' - 4y' - 5y = 4e^{2t}$$

2.)
$$y'' - 4y' - 5y = t^2 - 2t + 1$$

3.)
$$y'' - 4y' - 5y = 4sin(3t)$$

4.)
$$y'' - 5y = 4sin(3t)$$

5.)
$$y'' - 4y' = t^2 - 2t + 1$$

6.)
$$y'' - 4y' - 5y = 4(t^2 - 2t - 1)e^{2t}$$

7.)
$$y'' - 4y' - 5y = 4sin(3t)e^{2t}$$

8.)
$$y'' - 4y' - 5y = 4(t^2 - 2t - 1)sin(3t)e^{2t}$$

9.)
$$y'' - 4y' - 5y = 4sin(3t) + 4sin(3t)e^{2t}$$

10.)
$$y'' - 4y' - 5y$$

= $4sin(3t)e^{2t} + 4(t^2 - 2t - 1)e^{2t} + t^2 - 2t - 1$

11.)
$$y'' - 4y' - 5y = 4sin(3t) + 5cos(3t)$$

12.)
$$y'' - 4y' - 5y = 4e^{-t}$$