Consequence 2:

If ψ_{1} is a solution to $a f^{\prime \prime}+b f^{\prime}+c f=h$ and ψ_{2} is a solution to $a f^{\prime \prime}+b f^{\prime}+c f=k$, then $3 \psi_{1}+5 \psi_{2}$ is a solution to $a f^{\prime \prime}+b f^{\prime}+c f=3 h+5 k$,

Since ψ_{1} is a solution to $a f^{\prime \prime}+b f^{\prime}+c f=h, L\left(\psi_{1}\right)=h$.
Since ψ_{2} is a solution to $a f^{\prime \prime}+b f^{\prime}+c f=k, L\left(\psi_{2}\right)=k$.
Hence $L\left(3 \psi_{1}+5 \psi_{2}\right)=3 L\left(\psi_{1}\right)+5 L\left(\psi_{2}\right)$

$$
=3 h+5 k
$$

Thus $3 \psi_{1}+5 \psi_{2}$ is also a solution to

$$
a f^{\prime \prime}+b f^{\prime}+c f=3 h+5 k
$$

Thm: Suppose $c_{1} \phi_{1}(t)+c_{2} \phi_{2}(t)$ is a general solution to

$$
a y^{\prime \prime \prime}+b y^{\prime}+c y=0,
$$

If ψ is a solution to

$$
a y^{\prime \prime}+b y^{\prime}+c y=g(t)[*],
$$

Then $\psi+c_{1} \phi_{1}(t)+c_{2} \phi_{2}(t)$ is also a solution to [*].
Moreover if γ is also a solution to [*], then there exist constants c_{1}, c_{2} such that

$$
\gamma=\psi+c_{1} \phi_{1}(t)+c_{2} \phi_{2}(t)
$$

Or in other words, $\psi+c_{1} \phi_{1}(t)+c_{2} \phi_{2}(t)$ is a general solution to [*].

Proof:
Define $L(f)=a f^{\prime \prime}+b f^{\prime}+c f$.
Recall L is a linear function.
Since $c_{1} \phi_{1}(t)+c_{2} \phi_{2}(t)$ is a solution to the differential equation, $a y^{\prime \prime}+b y^{\prime}+c y=0$,

Since ψ is a solution to $a y^{\prime \prime}+b y^{\prime}+c y=g(t)$,

We will now show that $\psi+c_{1} \phi_{1}(t)+c_{2} \phi_{2}(t)$ is also a solution to $\left[{ }^{*}\right]$.

Claim: $c_{1} \phi_{1}(t)+c_{2} \phi_{2}(t)$ is a general solution to

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

Since γ a solution to $a y^{\prime \prime}+b y^{\prime}+c y=g(t)$,

We will first show that $\gamma-\psi$ is a solution to the differential equation $a y^{\prime \prime}+b y^{\prime}+c y=0$.

Since $\gamma-\psi$ is a solution to $a y^{\prime \prime}+b y^{\prime}+c y=0$ and $c_{1} \phi_{1}(t)+c_{2} \phi_{2}(t)$ is a general solution to

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

there exist constants c_{1}, c_{2} such that

$$
\begin{gathered}
\gamma-\psi= \\
\text { Thus } \gamma=\psi+c_{1} \phi_{1}(t)+c_{2} \phi_{2}(t)
\end{gathered}
$$

Thm:
Suppose f_{1} is a a solution to $a y^{\prime \prime}+b y^{\prime}+c y=g_{1}(t)$ and f_{2} is a a solution to $a y^{\prime \prime}+b y^{\prime}+c y=g_{2}(t)$, then $f_{1}+f_{2}$ is a solution to $a y^{\prime \prime}+b y^{\prime}+c y=g_{1}(t)+g_{2}(t)$

Proof: Let $L(f)=a f^{\prime \prime}+b f^{\prime}+c f$.
Since f_{1} is a solution to $a y^{\prime \prime}+b y^{\prime}+c y=g_{1}(t)$,

Since f_{2} is a solution to $a y^{\prime \prime}+b y^{\prime}+c y=g_{2}(t)$,

We will now show that $f_{1}+f_{2}$ is a solution to $a y^{\prime \prime}+b y^{\prime}+c y=g_{1}(t)+g_{2}(t)$.

Sidenote: The proofs above work even if a, b, c are functions of t instead of constants.

To solve $\left.a y^{\prime \prime}+b y^{\prime}+c y=g_{1}(t)+g_{2}(t)+\ldots g_{n}(t){ }^{* *}\right]$
1.) Find the general solution to $a y^{\prime \prime}+b y^{\prime}+c y=0$: $c_{1} \phi_{1}+c_{2} \phi_{2}$
2.) For each g_{i}, find a solution to $a y^{\prime \prime}+b y^{\prime}+c y=g_{i}$:

$$
\psi_{i}
$$

This includes plugging guessed solution ψ_{i} into $a y^{\prime \prime}+b y^{\prime}+c y=g_{i}$.

The general solution to [${ }^{* *}$] is

$$
c_{1} \phi_{1}+c_{2} \phi_{2}+\psi_{1}+\psi_{2}+\ldots \psi_{n}
$$

3.) If initial value problem:

Once general solution is known, can solve initial value problem (i.e., use initial conditions to find c_{1}, c_{2}).

Solve $y^{\prime \prime}-4 y^{\prime}-5 y=4 \sin (3 t), \quad y(0)=6, y^{\prime}(0)=7$.

1.) First solve homogeneous equation:

Find the general solution to $y^{\prime \prime}-4 y^{\prime}-5 y=0$:
Guess $y=e^{r t}$ for HOMOGENEOUS equation:
$y^{\prime}=r e^{r t}, y^{\prime}=r^{2} e^{r t}$
$y^{\prime \prime}-4 y^{\prime}-5 y=0$
$r^{2} e^{r t}-4 r e^{r t}-5 e^{r t}=0$
$e^{r t}\left(r^{2}-4 r-5\right)=0$
$e^{r t} \neq 0$, thus can divide both sides by $e^{r t}$:

$$
r^{2}-4 r-5=0
$$

$(r+1)(r-5)=0$. Thus $r=-1,5$.
Thus $y=e^{-t}$ and $y=e^{5 t}$ are both solutions to LINEAR HOMOGENEOUS equation.

Thus the general solution to the 2nd order LINEAR HOMOGENEOUS equation is

$$
y=c_{1} e^{-t}+c_{2} e^{5 t}
$$

2.) Find one solution to non-homogeneous eq'n:

Find a solution to $a y^{\prime \prime}+b y^{\prime}+c y=4 \sin (3 t)$:
Guess $y=A \sin (3 t)+B \cos (3 t)$

$$
\begin{aligned}
& y^{\prime}=3 A \cos (3 t)-3 B \sin (3 t) \\
& y^{\prime \prime}=-9 A \sin (3 t)-9 B \cos (3 t)
\end{aligned}
$$

$y^{\prime \prime}-4 y^{\prime}-5 y=4 \sin (3 t)$

$-9 A \sin (3 t)$	-	$9 B \cos (3 t)$
$12 B \sin (3 t)$	-	$12 A \cos (3 t)$
$-5 A \sin (3 t)$	-	$5 \cos (3 t)$

$(12 B-14 A) \sin (3 t)-(-14 B-12 A) \cos (3 t)=4 \sin (3 t)$
Since $\{\sin (3 t), \cos (3 t)\}$ is a linearly independent set:
$12 B-14 A=4$ and $-14 B-12 A=0$
Thus $A=-\frac{14}{12} B=-\frac{7}{6} B$ and
$12 B-14\left(-\frac{7}{6} B\right)=12 B+7\left(\frac{7}{3} B\right)=\frac{36+49}{3} B=\frac{85}{3} B=4$
Thus $B=4\left(\frac{3}{85}\right)=\frac{12}{85} \quad$ and $\quad A=-\frac{7}{6} B=-\frac{7}{6}\left(\frac{12}{85}\right)=-\frac{14}{85}$
Thus $y=\left(-\frac{14}{85}\right) \sin (3 t)+\frac{12}{85} \cos (3 t)$ is one solution to the nonhomogeneous equation.

Thus the general solution to the 2nd order linear nonhomogeneous
equation is

$$
y=c_{1} e^{-t}+c_{2} e^{5 t}-\left(\frac{14}{85}\right) \sin (3 t)+\frac{12}{85} \cos (3 t)
$$

3.) If initial value problem:

Once general solution is known, can solve initial value problem (i.e., use initial conditions to find c_{1}, c_{2}).

NOTE: you must know the GENERAL solution to the ODE BEFORE you can solve for the initial values. The homogeneous solution and the one nonhomogeneous solution found in steps 1 and 2 above do NOT need to separately satisfy the initial values.

Solve $y^{\prime \prime}-4 y^{\prime}-5 y=4 \sin (3 t), \quad y(0)=6, y^{\prime}(0)=7$.
General solution: $y=c_{1} e^{-t}+c_{2} e^{5 t}-\left(\frac{14}{85}\right) \sin (3 t)+\frac{12}{85} \cos (3 t)$
Thus $y^{\prime}=-c_{1} e^{-t}+5 c_{2} e^{5 t}-\left(\frac{42}{85}\right) \cos (3 t)-\frac{36}{85} \sin (3 t)$
$\begin{array}{lll}y(0)=6: & 6=c_{1}+c_{2}+\frac{12}{85} & \frac{498}{85}=c_{1}+c_{2} \\ y^{\prime}(0)=7: & 7=-c_{1}+5 c_{2}-\frac{42}{85} & \frac{637}{85}=-c_{1}+5 c_{2}\end{array}$
$6 c_{2}=\frac{498+637}{85}=\frac{1135}{85}=\frac{227}{17}$. Thus $c_{2}=\frac{227}{102}$.
$c_{1}=\frac{498}{85}-c_{2}=\frac{498}{85}-\frac{227}{102}=\frac{2988-1135}{510}=\frac{1853}{510}=\frac{109}{30}$
Thus $y=\left(\frac{109}{30}\right) e^{-t}+\left(\frac{227}{102}\right) e^{5 t}-\left(\frac{14}{85}\right) \sin (3 t)+\frac{12}{85} \cos (3 t)$.

Partial Check: $y(0)=\left(\frac{109}{30}\right)+\left(\frac{227}{102}\right)+\frac{12}{85}=6$.

$$
\begin{gathered}
y^{\prime}(0)=-\frac{109}{30}+5\left(\frac{227}{102}\right)-\frac{42}{85}=7 . \\
\left(e^{-t}\right)^{\prime \prime}-4\left(e^{-t}\right)^{\prime}-5\left(e^{-t}\right)=0 \text { and }\left(e^{5 t}\right)^{\prime \prime}-4\left(e^{5 t}\right)^{\prime}-5\left(e^{5 t}\right)=0
\end{gathered}
$$

Examples: Find a suitable form for ψ for the following differential equations:
1.) $y^{\prime \prime}-4 y^{\prime}-5 y=4 e^{2 t}$
2.) $y^{\prime \prime}-4 y^{\prime}-5 y=t^{2}-2 t+1$
3.) $y^{\prime \prime}-4 y^{\prime}-5 y=4 \sin (3 t)$
4.) $y^{\prime \prime}-5 y=4 \sin (3 t)$
5.) $y^{\prime \prime}-4 y^{\prime}=t^{2}-2 t+1$
6.) $y^{\prime \prime}-4 y^{\prime}-5 y=4\left(t^{2}-2 t-1\right) e^{2 t}$
7.) $y^{\prime \prime}-4 y^{\prime}-5 y=4 \sin (3 t) e^{2 t}$
8.) $y^{\prime \prime}-4 y^{\prime}-5 y=4\left(t^{2}-2 t-1\right) \sin (3 t) e^{2 t}$
9.) $y^{\prime \prime}-4 y^{\prime}-5 y=4 \sin (3 t)+4 \sin (3 t) e^{2 t}$
10.) $y^{\prime \prime}-4 y^{\prime}-5 y$

$$
=4 \sin (3 t) e^{2 t}+4\left(t^{2}-2 t-1\right) e^{2 t}+t^{2}-2 t-1
$$

11.) $y^{\prime \prime}-4 y^{\prime}-5 y=4 \sin (3 t)+5 \cos (3 t)$
12.) $y^{\prime \prime}-4 y^{\prime}-5 y=4 e^{-t}$

