Exams are graded Please see comments in uploaded file and check my addition etc. Please let me Know if you have any questions. $\left(\begin{array}{c}\right)\frac{3}{5}=2^{mk}$

Consequence 2: If ψ_1 is a solution to af'' + bf' + cf = hand ψ_2 is a solution to af'' + bf' + cf = k, then $3\psi_1 + 5\psi_2$ is a solution to af'' + bf' + cf = 3h + 5k, Since ψ_1 is a solution to af'' + bf' + cf = h, $L(\psi_1) = h$. Since ψ_2 is a solution to af'' + bf' + cf = k, $L(\psi_2) = k$. Hence $L(3\psi_1 + 5\psi_2) = 3L(\psi_1) + 5L(\psi_2)$ = 3h + 5k. Thus $3\psi_1 + 5\psi_2$ is also a solution to af'' + bf' + cf = 3h + 5k

Thm: Suppose
$$c_1\phi_1(t) + c_2\phi_2(t)$$
 is a general solution to
 $ay'' + by' + cy = 0, -2$ hence f
If ψ is a solution to
 $ay'' + by' + cy = g(t)$ [*], - hen here f
Then $\psi + c_1\phi_1(t) + c_2\phi_2(t)$ is also a solution to [*]. cond
Moreover if γ is also a solution to [*], then there exist
constants c_1, c_2 such that
 $\gamma = \psi + c_1\phi_1(t) + c_2\phi_2(t)$ is a general
solution to [*].
Or in other words $\psi + c_1\phi_1(t) + c_2\phi_2(t)$ is a general
solution to [*].
Define $L(f) = af'' + bf' + cf$. $\gamma_{L} \mu_{S}$ f DE
Recall L is a linear function.
Missing $c_1\phi_1(t) + c_2\phi_2(t)$ is a solution to the differential
equation, $ay'' + by' + cy = 0$,
 $L(c_1\phi_1 + c_2\phi_2(t)$ is a solution to the differential
equation to $ay'' + by' + cy = g(t)$,
 M Since ψ is a solution to $ay'' + by' + cy = g(t)$,
 $L(\Psi) = g(\Psi)$

 $C_{1}L(q_{1})(\alpha L(q_{2}))$ ay"164' + cg We will now show that $\psi + c_1\phi_1(t) + c_2\phi_2(t)$ is also a solution to [*]. $\mathcal{L}\left(\mathcal{Y}+\mathcal{E},\phi_{1}+c_{2}\phi_{2}\right)=\mathcal{L}\left(\mathcal{Y}\right)+\mathcal{L}\left(c_{1}\phi_{1}+c_{2}\phi_{2}\right)$ = q(t) + O = q(t)Claim Claim is a general solution to $+ c_1 \phi_1 + c_2 \phi_1 = 0,$ Since γ a solution to ay'' + by' + cy = g(t), $\sim hypothesis$ $\mathcal{L}(\mathcal{V}) = g(\mathbf{f})$ We will first show that $\gamma - \psi$ is a solution to the differential equation ay'' + by' + cy = 0. $L(Y - \Psi) = L(Y) - L(\Psi) = g(H) - g(H) = 0$ Since $\gamma - \psi$ is a solution to ay'' + by' + cy = 0 and $c_1\phi_1(t) + c_2\phi_2(t)$ is a general solution to ay'' + by' + cy = 0, is a general solution to there exist constants c_1, c_2 such that $\gamma - \psi = \frac{c_1 \phi_1 + c_2 \phi_2}{c_1 \phi_1 + c_2 \phi_2} + \psi$ Thus $\gamma \neq \underline{\psi} + c_1 \phi_1(t) + c_2 \phi_2(t)$. $\leftarrow conclusion$

Thm:

Suppose f_1 is a solution to $ay'' + by' + cy = g_1(t)$ and f_2 is a solution to $ay'' + by' + cy = q_2(t)$, then $f_1 + f_2$ is a solution to $ay'' + by' + cy = g_1(t) + g_2(t)$ Proof: Let L(f) = af'' + bf' + cf. Since f_1 is a solution to $ay'' + by' + cy = g_1(t)$, (\clubsuit) $L(f_{i}) = g_{i}$ Since f_2 is a solution to $ay'' + by' + cy = g_2(t)$, $(\not p \not p)$ $l(f_1) = 9_2$ We will now show that $f_1 + f_2$ is a solution to $\not \in$ $ay'' + by' + cy = g_1(t) + g_2(t).$ (p ø Ø)

 $L(f_1 + f_2) = L(f_1) + L(f_1) = 9, +9_2$ $\Rightarrow f_1 + f_2 \quad is a ssh to ($$$$$$$$$$$$$$$$$$$$$$$$$$$$

Sidenote: The proofs above work even if a, b, c are functions of t instead of constants.

3.5
To solve
$$ay'' + by' + cy = g_1(t) + g_2(t) + ...g_n(t)$$
 [**]
1.) Find the general solution to $ay'' + by' + cy = 0$:
 $c_1\phi_1 + c_2\phi_2$ solve have
2.) For each g_i , find a solution to $ay'' + by' + cy = g_i$:
 ψ_i
This includes plugging guessed solution ψ_i into
 $ay'' + by' + cy = g_i$.
The general solution to [**] is
 $2y = c_1\phi_1 + c_2\phi_2 + \psi_1 + \psi_2 + ...\psi_n$
3.) If initial value problem:
Once general solution is known, can solve initial value
problem (i.e., use initial conditions to find c_1, c_2).
 $plug in y(t_n) = y_0 2$ solve for
 $y'(t_0) = y_1 1 - c_1 t_2$
 $plug into general
 $MON - homog Schn$$

Solve
$$y'' - 4y' - 5y = 4sin(3t)$$
, $y(0) = 6$, $y'(0) = 7$. We
1.) First solve homogeneous equation:
Find the general solution to $y'' - 4y' - 5y = 0$:
Guess $y = e^{rt}$ for HOMOGENEOUS equation:
 $y' = re^{rt}$, $y' = r^2e^{rt}$
 $y'' - 4y' - 5y = 0$
 $r^2e^{rt} - 4re^{rt} - 5e^{rt} = 0$
 $e^{rt}(r^2 - 4r - 5) = 0$
 $e^{rt} \neq 0$, thus can divide both sides by e^{rt} :
 $r^2 - 4r - 5 = 0$
 $(r + 1)(r - 5) = 0$. Thus $r = -1, 5$.

Thus $y = e^{-t}$ and $y = e^{5t}$ are both solutions to LINEAR HOMOGENEOUS equation.

Thus the general solution to the 2nd order LINEAR HOMOGENEOUS equation is $y = c_1 e^{-t} + c_2 e^{5t}$

Superior
$$y = A \sin 3t + B \cos(3t)$$
 Meta
2.) Find one folution to non-homogeneous eq. 1:
Find a solution to $ay'' + by' + dy = 4\sin(3t)$:
Guess $y = A\sin(3t) + B\cos(3t) = 9i(1)$
 $y' = 3A\cos(3t) - 3B\sin(3t)$
 $y'' = -9A\sin(3t) - 9B\cos(3t)$
 $y'' - 4y' - 5y = 4\sin(3t) = 5s/ve$ for undetermined
 $\cos efficients A + B$
 $y'' - 4y' - 5y = 4\sin(3t) = 9B\cos(3t)$
 $y'' - 4y' - 5y = 4\sin(3t) = 9B\cos(3t)$
 $y'' - 9A\sin(3t) = 9B\cos(3t)$
 $y'' - 9A\sin(3t) = 9B\cos(3t)$
 $y'' - 29A\sin(3t) = 9B\cos(3t)$
 $y'' - 5A\sin(3t) = 12A\cos(3t) = 4\sin(3t)$
 $(12B - 14A)\sin(3t) - (-14B - 12A)\cos(3t) = 4\sin(3t)$
 $(12B - 14A = 4 and + 14B + 12A = 0)$
Thus $A = -\frac{14}{12}B = -\frac{7}{6}B$ and $O\cos(3t) = \frac{4}{3}B = 4$
Thus $B = 4(\frac{3}{85}) = \frac{12}{85}$ and $A = -\frac{7}{6}B = -\frac{7}{6}(\frac{12}{85}) = -\frac{14}{85}$
Thus $y = (-\frac{14}{85})\sin(3t) + \frac{12}{85}\cos(3t)$ is one solution to the nonhomogeneous equation.
Thus the general solution to the 2nd order linear nonhomogeneous
 $y = (C_1 e^{-\frac{1}{2}} + C_2 e^{-\frac{1}{2}})$

equation is

$$y = c_1 e^{-t} + c_2 e^{5t} - \left(\frac{14}{85}\right) \sin(3t) + \frac{12}{85} \cos(3t)$$

3.) If initial value problem:

Once general solution is known, can solve initial value problem (i.e., use initial conditions to find c_1, c_2).

NOTE: you must know the GENERAL solution to the ODE BEFORE you can solve for the initial values. The homogeneous solution and the one nonhomogeneous solution found in steps 1 and 2 above do NOT need to separately satisfy the initial values.

Solve
$$y'' - 4y' - 5y = 4sin(3t)$$
, $y(0) = 6$, $y'(0) = 7$.
General solution: $y = c_1 e^{-4} + c_2 e^{54} - (\frac{14}{85})sin(3t) + \frac{12}{85}cos(3t)$
Thus $y = -c_1 e^{-4} + 5c_2 e^{54} - (\frac{42}{85})cos(3t) - \frac{36}{85}sin(3t)$
 $y(0) = 6$: $6 = c_1 + c_2 + \frac{12}{85}$ $\frac{498}{85} = c_1 + c_2$
 $y'(0) = 7$: $7 = -c_1 + 5c_2 - \frac{42}{85}$ $\frac{637}{85} = -c_1 + 5c_2$
 $6c_2 = \frac{498 + 637}{85} = \frac{1135}{85} = \frac{227}{17}$. Thus $c_2 = \frac{227}{102}$.
 $c_1 = \frac{498}{85} - c_2 = \frac{498}{85} - \frac{227}{102} = \frac{2988 - 1135}{510} = \frac{1853}{510} = \frac{109}{30}$
Thus $y = (\frac{109}{30})e^{-t} + (\frac{227}{102})e^{5t} - (\frac{14}{85})sin(3t) + \frac{12}{85}cos(3t)$.

Partial Check: $y(0) = (\frac{109}{30}) + (\frac{227}{102}) + \frac{12}{85} = 6.$ $y'(0) = -\frac{109}{30} + 5(\frac{227}{102}) - \frac{42}{85} = 7.$ $(e^{-t})'' - 4(e^{-t})' - 5(e^{-t}) = 0 \text{ and } (e^{5t})'' - 4(e^{5t})' - 5(e^{5t}) = 0$ $(e^{-t})'' + 4(e^{-t})' - 5(e^{-t}) = 0 \text{ and } (e^{5t})'' - 4(e^{5t})' - 5(e^{5t}) = 0$ $(e^{-t})'' + 4(e^{-t})' - 5(e^{-t}) = 0 \text{ and } (e^{5t})'' - 4(e^{5t})' - 5(e^{5t}) = 0$ $(e^{-t})'' + 4(e^{-t})' - 5(e^{-t}) = 0 \text{ and } (e^{5t})'' - 4(e^{5t})' - 5(e^{5t}) = 0$ $(e^{-t})'' + 4(e^{-t})' - 5(e^{-t}) = 0 \text{ and } (e^{5t})'' - 4(e^{5t})' - 5(e^{5t}) = 0$ $(e^{-t})'' + 4(e^{-t})' - 5(e^{-t}) = 0 \text{ and } (e^{5t})'' - 4(e^{5t})' - 5(e^{5t}) = 0$ $(e^{-t})'' + 4(e^{-t})' - 5(e^{-t}) = 0 \text{ and } (e^{5t})'' - 4(e^{5t})' - 5(e^{5t}) = 0$ $(e^{-t})'' + 4(e^{-t})' - 5(e^{-t}) = 0 \text{ and } (e^{5t})'' - 4(e^{5t})' - 5(e^{5t}) = 0$ $(e^{-t})'' + 4(e^{-t})' - 5(e^{-t}) = 0 \text{ and } (e^{5t})'' - 4(e^{5t})' - 5(e^{5t}) = 0$ $(e^{-t})'' + 4(e^{-t})' - 5(e^{-t}) = 0 \text{ and } (e^{5t})'' - 5(e^{-t}) = 0$ $(e^{-t})'' + 4(e^{-t})' - 5(e^{-t}) = 0 \text{ and } (e^{5t})'' - 5(e^{5t}) = 0$ $(e^{-t})'' + 4(e^{-t})' - 5(e^{-t}) = 0 \text{ and } (e^{5t})'' - 5(e^{-t}) = 0$ $(e^{-t})'' + 4(e^{-t})' - 5(e^{-t}) = 0 \text{ and } (e^{5t})'' - 5(e^{-t}) = 0$ $(e^{-t})'' + 4(e^{-t})' - 5(e^{-t}) = 0 \text{ and } (e^{-t})' - 5(e^{-t}) = 0$ $(e^{-t})'' + 4(e^{-t})' - 5(e^{-t}) = 0$ $(e^{-t})' + 4(e^{-t})' - 5(e^{-t}) = 0$ $(e^{-t})' + 4(e^{-t})' - 5(e^{-t}) = 0$ $(e^{-t})' + 4(e^{-t})' + 5(e^{-t}) = 0$ $(e^{-t})' + 4(e^{-t})' - 5(e^{-t}) = 0$ $(e^{-t})' + 4(e^{-t})' + 5(e^{-t}) = 0$ $(e^{-t})' + 6(e^{-t})' + 5(e^{-t}) = 0$ $(e^{-t})' + 6(e^{-t})' + 6(e^{-t}) = 0$ $(e^{-t})' + 6(e^{-t})' + 6(e^{-t}) = 0$ $(e^{-t})' + 6(e^{-t})' + 6(e^{-t}) = 0$ $(e^{-t})' + 6(e^{-t})' + 6(e^{-t})' + 6(e^{-t}) = 0$ $(e^{-t})' + 6(e^{-t})' + 6(e^{-t}) = 0$ $(e^{-t})' + 6(e^{-t}) + 6(e^{-t}) = 0$ $(e^{-t$

what /

guess . Mow do you 3.5 **Examples:** Find a suitable form for ψ for the following differential equations: Step 1: Solve n2-4v-5=0,A J J 1.) $y'' - 4y' - 5y = e^{2t}$ =) y = e 5 + { homag y=e Jsth Guess Y = A C E plug 17 and solve to A 2nd day poly h 2.) $y'' - 4y' - 5y = t^2 - 2t + 1$ Guess: Y(t) = At + Bt + C3.) y'' - 4y' - 5y = 4sin(3t) [from " obvious ']bas-d Guess trial demon $\Psi(t) = Asin(3t) + Bros(3t)$ 4.) y'' - 5y = 4sin(3t)Guess $\Psi(t) = Asin(3t)$ Don't need Bcos (3f term since no y' ferm 5.) $y'' - 4y' = t^2 - 2t + 1$, 3 = q ua HorGuess: $\Psi = t (At^2 + Bt + C)$ 6.) $y'' - 4y' - 5y = 4(t^2 - 2t - 1)e^{2t}$ no y ferm

7.)
$$y'' - 4y' - 5y = 4sin(3t)e^{2t}$$

8.)
$$y'' - 4y' - 5y = 4(t^2 - 2t - 1)sin(3t)e^{2t}$$

9.)
$$y'' - 4y' - 5y = 4sin(3t) + 4sin(3t)e^{2t}$$

10.)
$$y'' - 4y' - 5y$$

= $4sin(3t)e^{2t} + 4(t^2 - 2t - 1)e^{2t} + t^2 - 2t - 1$

11.)
$$y'' - 4y' - 5y = 4sin(3t) + 5cos(3t)$$

12.) $y'' - 4y' - 5y = 4e^{-t} - 6 mog$ $p/ug \phi = Ae^{-t} - 9 ()'' - 9() - 5() = 0$ Guess Y=Ate-t