Exams are graded
please see comments in uploaded file and check my addition, $e^{t c}$.
please let me Know if you hare any questions. () $\frac{3}{2}=$ gand

Consequence 2:
If ψ_{1} is a solution to $\overbrace{a f^{\prime \prime}+b f^{\prime}+c f}^{L H /}=h$ and ψ_{2} is a solution to $a f^{\prime \prime}+b f^{\prime}+c f=k$, then $3 \psi_{1}+5 \psi_{2}$ is a solution to $a f^{\prime \prime}+b f^{\prime}+c f=3 h+5 k$,
Since ψ_{1}^{\prime})is a solution to $a f^{\prime \prime}+b f^{\prime}+c f \equiv h, L\left(\psi_{1}\right)=h$ RH
Since ψ_{1} is a solution to $a f^{\prime \prime}+b f^{\prime}+c f \cong h, L\left(\psi_{1}\right)=h$.
Since ψ_{2} s a solution to $a f^{\prime \prime}+b f^{\prime}+c f=\mu, L\left(\psi_{2}\right)=k_{i}$

Hence $L\left(\underline{3 \psi_{1}+5 \psi_{2}}\right)=3 \underline{L\left(\psi_{1}\right)}+5 \underline{L\left(\psi_{2}\right)}$

$$
=3 \underline{h}+5 \underline{k}
$$

Thus $3 \psi_{1}+5 \psi_{2}$ is also a solution to

$$
\underbrace{a f^{\prime \prime}+b f^{\prime}+c f}_{\angle H S}=3 h+5 k
$$

is a linear fin
3.5

The: Suppose $\frac{c_{1} \phi_{1}(t)+c_{2} \phi_{2}(t)}{a y^{\prime \prime}+b y^{\prime}+c y}=0, \longleftarrow 2$ homog general solution to
If ψ is a solution to

$$
\begin{aligned}
& \text { on to } \\
& a y^{\prime \prime}+b y^{\prime}+c y=g(t)\left[{ }^{*}\right], \curvearrowleft \text { hon honor } \underset{\AA}{ }
\end{aligned}
$$

Then $\psi+c_{1} \phi_{1}(t)+c_{2} \phi_{2}(t)$ is also a solution to [*].] conc
Moreover if γ is also a solution to [*], then there exist constants c_{1}, c_{2} such that

$$
\gamma=\psi+c_{1} \phi_{1}(t)+c_{2} \phi_{2}(t)
$$

Or in other words $\psi+c_{1} \phi_{1}(t)+c_{2} \phi_{2}(t)$ is a general solution to $\left.{ }^{*}\right]$.

Proof: all solis look like this
$(f)=a f^{\prime \prime}+b f^{\prime}+c f . \longleftarrow$ LHS of DE
Recall L is a linear function.
hyp

$R \nu^{\rho}\left[\right.$ Since ψ is a solution to $a y^{\prime \prime}+b y^{\prime}+c y=g(t)$,

$$
L(\psi)=g(t)
$$

$$
\left.a y^{\prime \prime}+b y^{\prime}+c g \quad\right)
$$

$$
c_{1} b\left(q_{1}\right), c_{2}\left(c_{2}\right)
$$

We will now show that $\psi+c_{1} \phi_{1}(t)+c_{2} \phi_{2}(t)$ is also a solution to [*].- hon homos DE

$$
\begin{aligned}
\begin{aligned}
\left.L(\psi)+c_{1} \phi_{1}+c_{2} \phi_{2}\right)
\end{aligned} & =L(\psi)+L\left(c_{1} \phi_{1}+c_{2} \phi_{2}\right) \\
& =g(t)+0=g(t)
\end{aligned}
$$

a general solution to

$$
\psi+c_{1} \phi_{1}+c_{2} \phi_{2} \quad a y^{\prime \prime}+b y^{\prime}+c y=0
$$

Since $\gamma^{\text {a solution }}$ to $a y^{\prime \prime}+b y^{\prime}+c y=g(t)$, «hypothes;,

$$
L(\gamma)=g(t)
$$

We will first show that $\gamma-\psi$ a solution to the differentrial equation $a y^{\prime \prime}+b y^{\prime}+c y=0$. $<$ homos

$$
L(\gamma-\psi)=L(\gamma)-L(\psi)=g(t)-g(t)=0
$$

$\operatorname{Sin} \gamma-\psi$ a solution to $a y^{\prime \prime}+b y^{\prime}+c y=0$ and $\left.\xlongequal{c_{1} \phi_{1}(t)+c_{2} \phi_{2}(t)} \begin{array}{c}\text { is a general solution to } \\ a y^{\prime \prime}+b y^{\prime}+c y=0,\end{array}\right] \leqslant h y$ pothesis
there exist constants c_{1}, c_{2} such that

$$
\begin{aligned}
& \text { exist constants } c_{1}, c_{2} \text { such that } \\
& \underline{\psi-\psi}+\psi \\
& \underline{=} c_{1} \phi_{1}+c_{2} \phi_{2}
\end{aligned}
$$

Thus $\gamma \underset{\gamma}{\psi+c_{1} \phi_{1}(t)+c_{2} \phi_{2}(t)} . \leftarrow$ conclusion \square

The:
Suppose f_{1} is a a solution to $a y^{\prime \prime}+b y^{\prime}+c y=g_{1}(t)$ and f_{2} is a a solution to $a y^{\prime \prime}+b y^{\prime}+c y=q_{2}(t)$, then $f_{1}+f_{2}$ is a solution to $a y^{\prime \prime}+b y^{\prime}+c y=g_{1}(t)+g_{2}(t)$

Proof: Let $L(f)=a f^{\prime \prime}+b f^{\prime}+c f$.
Since f_{1} is a solution to $a y^{\prime \prime}+b y^{\prime}+c y=g_{1}(t)$,

$$
L\left(f_{1}\right)=g
$$

Since f_{2} is a solution to $\underline{a y^{\prime \prime}+b y^{\prime}+c y}=\underbrace{g_{2}(t),}(\notin \phi))$

$$
L\left(f_{L}\right)=g_{2}
$$

We will now show that $f_{1}+f_{2}$ is a solution to L aby $\prime^{\prime \prime}+b y^{\prime}+c y=g^{\prime}(t)+g_{2}(t) . \quad($ 日 $)$

$$
\begin{aligned}
& L\left(f_{1}+f_{2}\right)=L\left(f_{1}\right)+L\left(f_{2}\right)=9,+9 \\
& \quad \Rightarrow f_{1}+f_{2} \text { is a ssh to }(\infty \infty)
\end{aligned}
$$

Sidenote: The proofs above work even if a, b, c are functions of t instead of constants.
3.5

To solve $a y^{\prime \prime}+b y^{\prime}+c y=\underline{g_{1}(t)}+\underline{g_{2}(t)+\ldots \underline{g_{n}(t)}\left[{ }^{* *}\right]}$
1.) Find the general solution to $a y^{\prime \prime}+b y^{\prime}+c y=0: \varsigma_{5}$

$$
\underline{c_{1} \phi_{1}+c_{2} \phi_{2}} \text { solve hours }
$$

2.) For each g_{i}, find a solution to $a y^{\prime \prime}+b y^{\prime}+c y=g_{i}$:

$$
\psi_{i}
$$

This includes plugging guessed solution ψ_{i} into $a y^{\prime \prime}+b y^{\prime}+c y=g_{i}$.

The general solution to [**] is

$$
\begin{aligned}
& \left.\rightarrow L \underset{d}{y}=c_{1}^{c_{1} \phi_{1}+c_{2} \phi_{2}}+\underline{\psi}_{1}+\psi_{2}+\ldots \psi_{n}\right) \\
& \text { 3.) If initial value problem: } \\
& \text { Once general solution is known, can solve initial value } \\
& \text { problem (ide., use initial conditions to find } c_{1}, c_{2} \text {). } \\
& \text {-plug in y(to) }=\text { yo solve for } \\
& \left.y^{\prime}\left(t_{0}\right)=y,\right\} \\
& c_{1}+c_{2} \\
& \text { log into } \\
& \text { gene } \\
& \text { al } \\
& \frac{\text { NoN-homog }}{\text { hon }} \\
& \text { sch }
\end{aligned}
$$

Solve $y^{\prime \prime}-4 y^{\prime}-5 y=4 \sin (3 t), y(0)=6, y^{\prime}(0)=7 . \nleftarrow$ ex ed 1.) First solve homogeneous equation:

Find the general solution to $y^{\prime \prime}-4 y^{\prime}-5 y=0$:
Guess $y=e^{r t}$ for HOMOGENEOUS equation:

$(r+1)(r-5)=0$. Thus $r=-1,5$.
Thus $y=e^{-t}$ and $y=e^{5 t}$ are both solutions to LINEAR HOMOGENEOUS equation.

Thus the general solution to the and order LINEAR HOMOGENEOUS equation is

$$
y=c_{1} e^{-t}+c_{2} e^{5 t}
$$

\rightarrow Guessed $y=A \sin 3 t+B \cos (3 t)$. Mc to
2.) Find one olution to non-homogeneous eq n: Find a solution to $a y^{\prime \prime}+b y^{\prime}+a y=4 \sin (3 t)$:

$$
\begin{aligned}
& y^{\prime \prime}-4 y^{\prime}-5 y=4 \sin (3 t)
\end{aligned} \begin{gathered}
\text { solve for undeter mined } \\
\text { coefficients A sB }
\end{gathered}
$$

Since $\{\sin (3 t), \cos (3 t)\}$ is a linear y independent set:
$12 B-14 A=4$ and $+14 B+12 A=0$
Thus $A \xlongequal{4}=\frac{14}{12} B=-\frac{7}{6} B$ and

$$
12 B-14\left(-\frac{7}{6} B\right)=12 B+7\left(\frac{7}{3} B\right)=\frac{36+49}{3} B=\frac{85}{3} B=4
$$

Thus $B=4\left(\frac{3}{85}\right)=\frac{12}{85} \quad$ and $A=-\frac{7}{6} B=-\frac{7}{6}\left(\frac{12}{85}\right)=-\frac{14}{85}$
Thus $y=\left(-\frac{14}{85}\right) \sin (3 t)+\frac{12}{85} \cos (3 t)$ is one solution to the nonhomogeneous equation.

Thus the general solution to the 2 nd order linear nonhomogeneous

$$
y=\left(c_{1} e^{-t}+c_{2} e^{5 t}\right)+
$$

homos
equation is

$$
y=c_{1} e^{-t}+c_{2} e^{5 t}-\left(\frac{14}{85}\right) \sin (3 t)+\frac{12}{85} \cos (3 t)
$$

3.) If initial value problem:

Once general solution is known, can solve initial value problem (i.e., use initial conditions to find c_{1}, c_{2}). to non homo
NOTE: you must know the GENERAL solution to the ODE BEFORE you can solve for the initial values. The homogeneous solution and the one nonhomogeneous solution found in steps 1 and 2 above do NOT need to separately satisfy the initial values.

Solve $y^{\prime \prime}-4 y^{\prime}-5 y=4 \sin (3 t), \quad y(0)=6, y^{\prime}(0)=7$.
General solution: $4=c_{1} e^{-(4)}+c_{2} e^{5 \xi^{2}}-\left(\frac{14}{85}\right) \sin (3 \epsilon)+\frac{12}{85} \cos (3 t)$
Thu $\mathbb{y}^{\frac{1}{2}}=-c_{1} e^{-4}+5 c_{2} e^{56}-\left(\frac{42}{85}\right) \cos (34)-\frac{36}{85} \sin (3+6)$

$y(0)=6:$	$6=c_{1}+c_{2}+\frac{12}{85}$	$\frac{498}{85}=c_{1}+c_{2}$
$y^{\prime}(0)=7:$	$7=-c_{1}+5 c_{2}-\frac{42}{85}$	$\frac{637}{85}=-c_{1}+5 c_{2}$

$6 c_{2}=\frac{498+637}{85}=\frac{1135}{85}=\frac{227}{17}$. Thus $c_{2}=\frac{227}{102}$.
$c_{1}=\frac{498}{85}-c_{2}=\frac{498}{85}-\frac{227}{102}=\frac{2988-71135}{510}=\frac{1853}{510}=\frac{109}{30}$
Thus $y=\left(\frac{109}{30}\right) e^{-t}+\left(\frac{227}{102}\right) e^{5 t}-\left(\frac{14}{85}\right) \sin (3 t)+\frac{12}{85} \cos (3 t)$. check

Partial Check: $\left.y(0)=\left(\frac{109}{30}\right)+\left(\frac{227}{102}\right)+\frac{12}{85}=6.\right\}$ satisfies
) initial values V
$\left(e^{-t}\right)^{\prime \prime}-4\left(e^{-t}\right)^{\prime}-5\left(e^{-t}\right)=0$ and $\left(e^{5 t}\right)^{\prime \prime}-4\left(e^{5 t}\right)^{\prime}-5\left(e^{5 t}\right)=0$
e easy to check homey pant $\sqrt{\text { checking non homos part }}$ is more work
$3.5:$ How do you guess
Examples: Find a suitable form for ψ for the following differential equations:(Step 1: Solve honor
\qquad
2.) $y^{\prime \prime}-4 y^{\prime}-5 y=t^{2}-2 t+1 \quad \begin{aligned} & \text { and day } \\ & 2\end{aligned}$ poly h ornis

Guess: $\psi(t)=A t^{2}+B t+C$
3.) $y^{\prime \prime}-4 y^{\prime}-5 y=4 \sin (3 t)\left\langle\begin{array}{l}E_{k}^{x} \text { from } \\ \omega=d\end{array}\right.$
"llobulous'l
Guess based on

$$
\psi(t)=A \sin (3 t)+B \cos (3 t)
$$

4.) $y^{\prime \prime}-\underline{5 y}=4 \sin (3 t)$

Guess $\Psi(t)=A \sin (3 t)$
Don't need $B \cos \left(3 f\right.$ term since no y^{\prime} term
5.) $y^{\prime \prime}-4 y^{\prime}=t^{2}-2 t+1,<3$ equation

Guess: $\psi=t\left(A t^{2}+B t+C\right)$
6.) $y^{\prime \prime}-4 y^{\prime}-5 y=4\left(t^{2}-2 t-1\right) e^{2 t}$ no y term $y^{\prime \prime} \neq y^{\prime \prime}$
7.) $y^{\prime \prime}-4 y^{\prime}-5 y=4 \sin (3 t) e^{2 t}$
8.) $y^{\prime \prime}-4 y^{\prime}-5 y=4\left(t^{2}-2 t-1\right) \sin (3 t) e^{2 t}$
9.) $y^{\prime \prime}-4 y^{\prime}-5 y=4 \sin (3 t)+4 \sin (3 t) e^{2 t}$
10.) $y^{\prime \prime}-4 y^{\prime}-5 y$

$$
=4 \sin (3 t) e^{2 t}+4\left(t^{2}-2 t-1\right) e^{2 t}+t^{2}-2 t-1
$$

11.) $y^{\prime \prime}-4 y^{\prime}-5 y=4 \sin (3 t)+5 \cos (3 t)$
12.) $y^{\prime \prime}-4 y^{\prime}-5 y=4 e^{-t} \leftarrow$ 亿omoy

$$
\begin{aligned}
& \text { Plog } \phi=A e^{-t} \Rightarrow()^{\prime \prime}-4()^{\prime}-s()=0 \\
& \text { Guess } \psi=A t e^{-t}
\end{aligned}
$$

