
Consequence 2:
If ψ1 is a solution to af ′′ + bf ′ + cf = h
and ψ2 is a solution to af ′′ + bf ′ + cf = k,
then 3ψ1+5ψ2 is a solution to af ′′+bf ′+cf = 3h+5k,

Since ψ1 is a solution to af ′′+ bf ′+ cf = h, L(ψ1) = h.

Since ψ2 is a solution to af ′′ + bf ′ + cf = k, L(ψ2) = k.

Hence L(3ψ1 + 5ψ2) = 3L(ψ1) + 5L(ψ2)

= 3h+ 5k.

Thus 3ψ1 + 5ψ2 is also a solution to
af ′′ + bf ′ + cf = 3h+ 5k
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Thm: Suppose c1ϕ1(t)+ c2ϕ2(t) is a general solution to
ay′′ + by′ + cy = 0,

If ψ is a solution to
ay′′ + by′ + cy = g(t) [*],

Then ψ + c1ϕ1(t) + c2ϕ2(t) is also a solution to [*].

Moreover if γ is also a solution to [*], then there exist
constants c1, c2 such that

γ = ψ + c1ϕ1(t) + c2ϕ2(t)

Or in other words, ψ + c1ϕ1(t) + c2ϕ2(t) is a general
solution to [*].

Proof:

Define L(f) = af ′′ + bf ′ + cf .

Recall L is a linear function.

Since c1ϕ1(t) + c2ϕ2(t) is a solution to the differential
equation, ay′′ + by′ + cy = 0,

Since ψ is a solution to ay′′ + by′ + cy = g(t),
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We will now show that ψ + c1ϕ1(t) + c2ϕ2(t) is also a
solution to [*].

Claim: c1ϕ1(t) + c2ϕ2(t) is a general solution to
ay′′ + by′ + cy = 0,

Since γ a solution to ay′′ + by′ + cy = g(t),

We will first show that γ−ψ is a solution to the different-
ial equation ay′′ + by′ + cy = 0.

Since γ − ψ is a solution to ay′′ + by′ + cy = 0 and

c1ϕ1(t) + c2ϕ2(t) is a general solution to
ay′′ + by′ + cy = 0,

there exist constants c1, c2 such that

γ − ψ =

Thus γ = ψ + c1ϕ1(t) + c2ϕ2(t).
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Thm:
Suppose f1 is a a solution to ay′′ + by′ + cy = g1(t)
and f2 is a a solution to ay′′ + by′ + cy = g2(t), then
f1 + f2 is a solution to ay′′ + by′ + cy = g1(t) + g2(t)

Proof: Let L(f) = af ′′ + bf ′ + cf .

Since f1 is a solution to ay′′ + by′ + cy = g1(t),

Since f2 is a solution to ay′′ + by′ + cy = g2(t),

We will now show that f1 + f2 is a solution to
ay′′ + by′ + cy = g1(t) + g2(t).

Sidenote: The proofs above work even if a, b, c are fun-
ctions of t instead of constants.
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To solve ay′′ + by′ + cy = g1(t) + g2(t) + ...gn(t) [**]

1.) Find the general solution to ay′′ + by′ + cy = 0:
c1ϕ1 + c2ϕ2

2.) For each gi, find a solution to ay′′ + by′ + cy = gi:
ψi

This includes plugging guessed solution ψi into
ay′′ + by′ + cy = gi.

The general solution to [**] is

c1ϕ1 + c2ϕ2 + ψ1 + ψ2 + ...ψn

3.) If initial value problem:

Once general solution is known, can solve initial value
problem (i.e., use initial conditions to find c1, c2).
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Solve y′′ − 4y′ − 5y = 4sin(3t), y(0) = 6, y′(0) = 7.

1.) First solve homogeneous equation:

Find the general solution to y′′ − 4y′ − 5y = 0:

Guess y = ert for HOMOGENEOUS equation:

y′ = rert, y′ = r2ert

y′′ − 4y′ − 5y = 0

r2ert − 4rert − 5ert = 0

ert(r2 − 4r − 5) = 0

ert ̸= 0, thus can divide both sides by ert:

r2 − 4r − 5 = 0

(r + 1)(r − 5) = 0. Thus r = −1, 5.

Thus y = e−t and y = e5t are both solutions to
LINEAR HOMOGENEOUS equation.

Thus the general solution to the 2nd order LINEAR
HOMOGENEOUS equation is

y = c1e
−t + c2e

5t
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2.) Find one solution to non-homogeneous eq’n:

Find a solution to ay′′ + by′ + cy = 4sin(3t):

Guess y = Asin(3t) +Bcos(3t)

y′ = 3Acos(3t)− 3Bsin(3t)

y′′ = −9Asin(3t)− 9Bcos(3t)

y′′ − 4y′ − 5y = 4sin(3t)

−9Asin(3t) − 9Bcos(3t)
12Bsin(3t) − 12Acos(3t)
−5Asin(3t) − 5cos(3t)

(12B − 14A)sin(3t) − (−14B − 12A)cos(3t) = 4sin(3t)

Since {sin(3t), cos(3t)} is a linearly independent set:

12B − 14A = 4 and −14B − 12A = 0

Thus A = − 14
12B = − 7

6B and

12B − 14(− 7
6B) = 12B + 7( 73B) = 36+49

3 B = 85
3 B = 4

Thus B = 4( 3
85 ) =

12
85 and A = − 7

6B = − 7
6 (

12
85 ) = − 14

85

Thus y = (− 14
85 )sin(3t) +

12
85cos(3t) is one solution to the

nonhomogeneous equation.

Thus the general solution to the 2nd order linear nonhomogeneous
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equation is
y = c1e

−t + c2e
5t − ( 1485 )sin(3t) +

12
85cos(3t)

3.) If initial value problem:

Once general solution is known, can solve initial value prob-
lem (i.e., use initial conditions to find c1, c2).

NOTE: you must know the GENERAL solution to the ODE
BEFORE you can solve for the initial values. The homogeneous
solution and the one nonhomogeneous solution found in steps
1 and 2 above do NOT need to separately satisfy the initial
values.

Solve y′′ − 4y′ − 5y = 4sin(3t), y(0) = 6, y′(0) = 7.

General solution: y = c1e
−t + c2e

5t − ( 1485 )sin(3t) +
12
85cos(3t)

Thus y′ = −c1e−t + 5c2e
5t − ( 4285 )cos(3t)−

36
85sin(3t)

y(0) = 6: 6 = c1 + c2 +
12
85

498
85 = c1 + c2

y′(0) = 7: 7 = −c1 + 5c2 − 42
85

637
85 = −c1 + 5c2

6c2 = 498+637
85 = 1135

85 = 227
17 . Thus c2 = 227

102 .

c1 = 498
85 − c2 = 498

85 − 227
102 = 2988−1135

510 = 1853
510 = 109

30

Thus y = ( 10930 )e−t + ( 227102 )e
5t − ( 1485 )sin(3t) +

12
85cos(3t).
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Partial Check: y(0) = ( 10930 ) + ( 227102 ) +
12
85 = 6.

y′(0) = − 109
30 + 5( 227102 )−

42
85 = 7.

(e−t)′′− 4(e−t)′− 5(e−t) = 0 and (e5t)′′− 4(e5t)′− 5(e5t) = 0
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Examples: Find a suitable form for ψ for the following
differential equations:

1.) y′′ − 4y′ − 5y = 4e2t

2.) y′′ − 4y′ − 5y = t2 − 2t+ 1

3.) y′′ − 4y′ − 5y = 4sin(3t)

4.) y′′ − 5y = 4sin(3t)

5.) y′′ − 4y′ = t2 − 2t+ 1

6.) y′′ − 4y′ − 5y = 4(t2 − 2t− 1)e2t
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7.) y′′ − 4y′ − 5y = 4sin(3t)e2t

8.) y′′ − 4y′ − 5y = 4(t2 − 2t− 1)sin(3t)e2t

9.) y′′ − 4y′ − 5y = 4sin(3t) + 4sin(3t)e2t

10.) y′′ − 4y′ − 5y
= 4sin(3t)e2t + 4(t2 − 2t− 1)e2t + t2 − 2t− 1



11.) y′′ − 4y′ − 5y = 4sin(3t) + 5cos(3t)

12.) y′′ − 4y′ − 5y = 4e−t
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