Create example $y=f(y, y)$ such that $y=g(t)$ is a solution to this D.E. and $g(U)=2$, but $g(t)-->$ infty as $t-->$ infty.

Suppose $y=0$ is a stable equilibrium solution for the differential equation $y^{\prime}=f(t, y)$. If $y=g(t)$ is a solution to the initial value problem
obviously 1) Hint: Draw direction field false with initial value (0, 2).

$$
\hat{t \rightarrow \infty}_{\rightarrow \rightarrow \infty} T(\sim)-ノ-x \lim _{t \rightarrow 0} v
$$

$\operatorname{since}\left\{\begin{array}{l}y=1 \\ y=0\end{array}\right\}$ is an equileli,bini

$$
\begin{aligned}
& y^{\prime}=f(t, y)=0 \\
& \lim _{t \rightarrow \infty} f(t, 1)=0
\end{aligned}
$$

since shore $y=1$ is zero

$$
M C=55 p+s
$$

Average $=46 \mathrm{pts}$
Moody : 2.8 pf S_{y} induction

$$
\text { Today: Ch } 3
$$

Tonight: post HWS 2 due Sunday Ch 3: $2^{\text {nd }}$ order LINEAR Caus Let's look af some relevant C Ch 2 problems first Focus on constant coeffiction $2^{\text {nd }}$ order linear homo ogenear

$$
\begin{array}{r}
a y+b y+c y=0 \\
\text { linear comb }=0 \text { nomog } \\
3.1-3.4
\end{array}
$$

$E X$ of jest order line

$$
\begin{aligned}
& \widehat{\substack{\text { linear } \\
\text { and } \\
\text { and }}} y^{\prime}+a y=0, \quad a \in \mathbb{R} \\
& \frac{d y}{d t}=-a y \\
& \frac{1}{a} \int \frac{d y}{x y}=-\int d t \\
& \frac{1}{a} \ln |a y|=-t+C \\
& \text { Check }\left[(\ln |a y|)^{\prime}=\frac{1}{a} \frac{1}{a y} \cdot a=\frac{1}{a y}\right] \\
& e^{\ln |a y|}=e^{-a t+C} \\
& a y=c e^{-a t} \\
& y=C e^{-a t}
\end{aligned}
$$

$2^{\text {nd }}$ order linear homog eX from ch 2

$$
-\longdiv { 1 ^ { \prime \prime } + a u ^ { \prime } } = 0
$$

from $4 n$ -

$$
\rightarrow y^{\prime \prime}+a y^{\prime}=0
$$

Let $v=y^{\prime} \Rightarrow v^{\prime}=y^{\prime \prime}$

$$
\rightarrow v^{\prime}+a v=0
$$

From last exams $v=C e^{-a t}$

$$
\begin{aligned}
& y^{\prime}=C e^{-a t} \\
& \frac{d y}{d t}=C e^{-a t} \\
& \int d y=\int C e^{-a t} d t \\
& y=C_{1} e^{-a t}+C_{2}
\end{aligned}
$$

$2^{\text {nd }}$ order $\Rightarrow \frac{\text { expect }}{\text { true }} 2$ costate | $\operatorname{limanan}_{\text {case }}$ |
| :--- |

$\begin{gathered}\text { Gancrual } \\ \text { gen } \\ \text { sen }\end{gathered} y^{\prime \prime}+a y^{\prime}=0$
Evouctavess \&Check

$$
\prod^{a y^{\prime \prime}+b y^{\prime}+c y=0} \begin{aligned}
& \text { Guess: } y=e^{r t}
\end{aligned}
$$

$$
\text { Guess: } y=C
$$

$$
\Rightarrow y^{\prime}=r e^{r t} y^{\prime \prime}=r^{2} e^{-t}
$$

Check (Plug in):

$$
\begin{aligned}
& \text { Check (Plug in): } \\
& a r^{2} e^{r t}+b r e^{r t}+c e^{r t}=0 \\
& e^{r t}\left(a r^{2}+b r+c\right)=0
\end{aligned}
$$

$e^{r t} \neq 0$ so can divide both sides by ert who loosing

$$
\begin{aligned}
& a r^{2}+b r+c=0 \\
\Rightarrow & r=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{aligned}
$$

If 2 different roots

$$
\begin{aligned}
& \Rightarrow r=r_{1} \text { \& } r_{2} \\
& \Rightarrow y=e^{r_{1} t} \text { and } y=e^{r_{2} t}
\end{aligned}
$$

are both soho
From linear algebra it is "obvious" that the general sol is

$$
y=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}
$$

Ex: $\quad y^{\prime \prime}+a y^{\prime}=0$
Gues $y=e^{r t}$

$$
\begin{aligned}
& y^{\prime}=r e^{r t} \\
& y^{\prime \prime}=r^{2} e^{r t}
\end{aligned}
$$

$$
\begin{aligned}
r^{2} y^{t}+a r f^{t} & =0 \\
r^{2}+a r & =0
\end{aligned}
$$

$$
r^{2}+a r=0
$$

$$
r(r+a)=0
$$

$$
\Rightarrow r=0, r=-a
$$

$$
\begin{gathered}
\Rightarrow r=0, r=-a \\
\Rightarrow \underbrace{y=e^{o^{t}} \text { and } y=e^{-a^{t}}}_{y=1}
\end{gathered}
$$

Linear combenation \Rightarrow gencerd

$$
=\frac{y=\begin{array}{c}
c_{1}(1)+c_{2} e^{-c t} \\
\text { senceral soh son }
\end{array}}{u^{\prime \prime}-5 u^{\prime}+64=0}
$$

$\subset \wedge$ 。

$$
\begin{aligned}
& y=e^{r t} \Rightarrow y^{\prime}=r e^{r-t} \Rightarrow y^{\prime \prime}=r e^{2} e^{\prime t} \\
& \text { no primes) }
\end{aligned}
$$

$$
\begin{aligned}
& r^{2} y^{y^{t}}-5 r y^{2 t}+6 f^{t}=0 \\
& 1 y^{\prime \prime}-5 y^{\prime}+6=0 \Rightarrow r^{2}-5 r+6=0 \\
& (r-3)(r-2)=0 \Rightarrow \begin{array}{l}
r=2 \\
r=3 \\
\hline
\end{array} \\
& \Rightarrow y=e^{3 t} \& y=e^{2 t} \underset{\text { sin }}{\operatorname{are}}
\end{aligned}
$$

General sch is

$$
y=c_{1} e^{2 t}+c_{2} e^{3 t}
$$

$$
r^{2}+1=0
$$

$$
y^{\prime \prime}+y=0 \Rightarrow r^{2} e^{r^{t}}+e^{x^{t}}=0
$$

$$
\begin{gathered}
r^{2}+1=0 \\
\Rightarrow r^{2}=-1 \Rightarrow r= \pm \sqrt{-1} \\
\Rightarrow r= \pm i \\
\Rightarrow y=e^{c t} \text { and } y=e^{-i t} \\
\text { are } v \operatorname{sol} n v . \text { taking }
\end{gathered}
$$

are v sol'n v
Real when taking
Note this is a 3.3 problem

$$
\begin{aligned}
& y=e^{i t}=\cos t+i \sin t \\
& y=e^{-i t}=\cos t-i \sin t \\
& y=\frac{e^{i t}+e^{-i t}}{2}=\frac{2 \cos t}{2}=\cos t \\
& \Rightarrow y=\cos t \text { is a son } \\
& y=-i\left(\frac{e^{i t}-e^{-i t}}{2}\right)=-i\left(\frac{2 i \sin t}{2}\right) \\
& =-\frac{-2 i^{2}}{4} \sin t=\sin t
\end{aligned}
$$

$$
\mid y=c_{1} \cos t+c_{2} \sin t
$$

general sock
3.3
$a r^{2}+b r+c=0$

$$
r=u \pm i v
$$

\Rightarrow general s ch is

$$
\begin{aligned}
& y=c_{1} e^{u t} \cos (v t) \\
&+c_{2} e^{u t} \sin (u t)
\end{aligned}
$$

3.4: repeat, root

$$
r=r_{1}
$$

$$
y=c_{1} e^{r_{1} t}+c_{2} t e^{r_{1} t}
$$

Def: A functionfis linear if

$$
\begin{aligned}
& \rightarrow f(a x)=a f(x) \\
& \rightarrow f(x+y)=f(x)+f / y)
\end{aligned}
$$

Ex: $y=\ln t$ is not linein

