So why did we guess $y=e^{r t}$?
Ka see old notes.

Goal: Solve linear homogeneous $\mathbb{Z n}^{n}$ nd order DE with constand coefficients, $\quad n_{-}^{\text {th }}<c h 4$ $a y^{\prime \prime}+b y^{\prime}+c y=0$ where a, b, c are constants
$\sqrt{\text { Standard mathematical technique: make up simpler probe] }}$ lems and see if you can generalize to the problem of interest.

Ex: linear homogeneous 1rst order DE: $y^{\prime}+2 y=0$
integrating factor $u(t)=e^{\int 2 d t}=e^{2 t}$
$y^{\prime} e^{2 t}+2 e^{2 t} y=0$
$\left(e^{2 t} y\right)^{\prime}=0$. Thus $\int\left(e^{2 t} y\right)^{\prime} d t=\int 0 d t$. Hence $e^{2 t} y=C$
So $y=C e^{-2 t}$.
Thus exponential function could also be a solution to a linear homogeneous 2nd order DE

Ex: Simple linear homog 2 nd order DE $y^{\prime \prime}+2 y^{\prime}=0$.
Let $v=y^{\prime}$, then $v^{\prime}=y^{\prime \prime}$
$y^{\prime \prime}+2 y^{\prime}=0$ implies $v^{\prime}+2 v=0$
Thus $v=y^{\prime}=\frac{d y}{d t}=c_{1} e^{-2 t}$.

$y^{\prime}(t)=\frac{d y}{d t}=c_{1} e^{-2 t}$.
To find c_{1}, we need to know initial value $y^{\prime}\left(t_{0}\right)=y_{1}$
Separate variables: $\quad d y=c_{1} e^{-2 t} d t$

$$
y=c_{1} e^{-2 t}+c_{2} .
$$

is an
Note 2 integrations give us 2 constants, c_{1} and c_{2}

$$
c_{1} \& c_{2}, \ldots c_{n} .
$$

To find constants, we need initial values, $y\left(t_{0}\right)=y_{0}$ and $y^{\prime}\left(t_{0}\right)=y_{1} \quad n^{\text {th }}$ order $\Rightarrow n^{\text {value }}$
Note also that the general solution is a linear combination of two solutions:

Let $c_{1}=1, c_{2}=0$, then we see, $y(t)=e^{-2 t}$ is a solution.
Let $c_{1}=0, c_{2}=1$, then we see, $y(t)=1$ is a solution.
The general solution is a linear combination of two solutions:

$y=c_{1} e^{-2 t}+c_{2}(1) . f \Leftarrow$

Recall: you have seen this before:
$A\left(c_{1} \vec{v}_{1}, \ldots c_{n} \vec{v}_{n}\right)=c_{1} \vec{A}_{0} \vec{v}_{2}+\ldots+c_{n} A \vec{v}_{n g}=0 \dot{p}$ eat!!! !

The general solution is a linear combination of linearly independent vectors that span the solution space:

$$
\mathbf{y}=c_{1} \mathbf{v}_{\mathbf{1}}+\ldots c_{n} \mathbf{v}_{\mathbf{n}} f=\text { linear combing }
$$

$$
\mathbf{y}=c_{1} \mathbf{v}_{\mathbf{1}}+\ldots c_{n} \mathbf{v}_{\mathbf{n}}
$$

FYI: You could see this again:

 $x_{n}-x_{n-1}-x_{n-2}=$ where $x_{1} \Rightarrow 1$ and $x_{2}=1$.Fibonacci sequence: $x_{n}=x_{n-1}+x_{n-2}$

$$
1,1,2,3,5,8,13,21, \ldots
$$

Note $x_{\text {品 }}=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{10}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{10}$
Proof: $x_{2}+x_{n-2}$ implies $x_{n}-x_{n-1}-x_{n-2}=0$ Suppose $x_{n}=r^{n}$. then $x_{n-1}=r^{n-1}$ and $x_{n-2}=r^{n-2}$
 Thus $r^{n-2}\left(r^{2}-r-1\right)=0$. Chary normal

Thus either $r=0$ or $r=\frac{1 \pm \sqrt{1-4(1)(-1)}}{2}=\frac{1 \pm \sqrt{5}}{2}$
Thus $x_{n}=0, \quad x_{n}=\left(\frac{1+\sqrt{5}}{2}\right)^{n}$ and $f_{n}=\left(\frac{1-\sqrt{5}}{2}\right)^{n}$
are 3 different sequences that satisfy the
homos linear recurrence relation: $x_{n} \not \leq x_{n-1}-x_{n-2}=0$.
Hence $x_{n}=c_{1}\left(\frac{1+\sqrt{5}}{2}\right)^{n}+c_{2}\left(\frac{1-\sqrt{5}}{2}\right)^{n}$ also satisfies this homogeneous linear recurrence relation.

Then for $n=1: x_{1}=1$ implies $c_{1}+c_{2}=1$
For $n=2: x_{2}=1$ implies $\left.c_{1}\left(\frac{1+\sqrt{5}}{2}\right)+c_{2}\left(\frac{1-\sqrt{5}}{2}\right)=1\right)$
We can solve this for c_{1} and c_{2} to determine that

$$
x_{n}=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n}
$$

$c_{1} s c_{2}$

