So why did we guess $y = e^{rt}$? Goal: Solve linear homogeneous 2nd order DE with constant coefficients, ay'' + by' + cy = 0 where a, b, c are constants Standard mathematical technique: make up simpler problems and see if you can generalize to the problem of interest.

Ex: linear homogeneous 1rst order DE: y' + 2y = 0

integrating factor
$$u(t) = e^{\int 2dt} = e^{2t}$$

$$y'e^{2t} + 2e^{2t}y = 0$$

 $(e^{2t}y)' = 0$. Thus $\int (e^{2t}y)'dt = \int 0dt$. Hence $e^{2t}y = C$
So $y = Ce^{-2t}$.

Thus exponential function could also be a solution to a linear homogeneous 2nd order DE

Ex: Simple linear homog 2nd order DE y'' + 2y' = 0. Let v = y', then v' = y'' y'' + 2y' = 0 implies v' + 2v = 0Thus $v = y' = \frac{dy}{dt} = c_1 e^{-2t}$.

$$y'(t) = \frac{dy}{dt} = c_1 e^{-2t}.$$

To find c_1 , we need to know initial value $y'(t_0) = y_1$
Separate variables: $dy = c_1 e^{-2t} dt$
 $y = c_1 e^{-2t} + c_2.$
Note 2 integrations give us 2 constants, c_1 and c_2
To find constants, we need initial values, $y(t_0) = y_0$ and $y'(t_0) = y_1$
 $y'(t_0) = y_1$
Note also that the general solution is a linear combination
of two solutions:
Let $c_1 = 1, c_2 = 0$, then we see, $y(t) = e^{-2t}$ is a solution.
Let $c_1 = 0, c_2 = 1$, then we see, $y(t) = 1$ is a solution.
Let $c_1 = 0, c_2 = 1$, then we see, $y(t) = 1$ is a solution.
Mathematical solution is a linear combination of two solutions:
 $y = c_1 e^{-2t} + c_2(1)$
Recall: you have seen this before:
 $A(c_1 v_1, \dots, c_n v_n) = c_1 v_1 + \dots c_n v_n f$ linear combination of linearly
independent vectors that span the solution space:
 $y = c_1 v_1 + \dots c_n v_n f$ linear combination

FYE You could see this again:
Math 4050: Solve homogeneous linear recurrance relation

$$x_n - x_{n-1} - x_{n-2} = 0$$
 where $x_1 = 1$ and $x_2 = 1$.
Fibonacci sequence: $x_n = x_{n-1} + x_{n-2}$
1, 1, 2, 3, 5, 8, 13, 21, ...
Note $x_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^{h^0} - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2}\right)^{h^0}$
Proof: $x_{n-1} + x_{n-2}$ implies $x_n - x_{n-1} - x_{n-2} = 0$
Suppose $x_n = r^n$, then $x_{n-1} = r^{n-1}$ and $x_{n-2} = r^{n-2}$
Then $0 = x_n - x_{n-1} - x_{n-2}$ ($r^n - \frac{r^{n-1}}{r^{n+1}}$ and $x_{n-2} = r^{n-2}$
Thus $r^{n-2}(r^2 - r - 1) = 0$.
Thus either $r = 0$ or $r = \frac{1\pm\sqrt{1-4(1)(-1)}}{2} = \frac{1\pm\sqrt{5}}{2}$
Thus $x_n = 0$, $x_n = \left(\frac{1+\sqrt{5}}{2}\right)^n$ and $f_n = \left(\frac{1-\sqrt{5}}{2}\right)^n$
are 3 different sequences that satisfy the
homog linear recurrence relation: $x_n - x_{n-1} - x_{n-2} = 0$.
Hence $x_n = c_1 \left(\frac{1+\sqrt{5}}{2}\right)^n + c_2 \left(\frac{1-\sqrt{5}}{2}\right)^n$ also satisfies this
homogeneous linear recurrence relation.

Suppose the initial conditions are $x_1 = 1$ and $x_2 = 1$

Then for n = 1: $x_1 = 1$ implies $c_1 + c_2 = 1$

For n = 2: $x_2 = 1$ implies $c_1\left(\frac{1+\sqrt{5}}{2}\right) + c_2\left(\frac{1-\sqrt{5}}{2}\right) = 1$

We can solve this for c_1 and c_2 to determine that

$$x_{n} = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^{n} - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2}\right)^{n}$$

$$y_{0} = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^{n}$$

$$y_{0} = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^{n}$$