Give that the solution to $\mathbf{x}^{\prime}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \mathbf{x} \quad$ is $\quad \mathbf{x}=c_{1}\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right] e^{r_{1} t}+c_{2}\left[\begin{array}{l}w_{1} \\ w_{2}\end{array}\right] e^{r_{2} t}$
[7] 2a.) Graph the solution to the IVP $\left[\begin{array}{l}x_{1}(0) \\ x_{2}(0)\end{array}\right]=\left[\begin{array}{l}w_{1} \\ w_{2}\end{array}\right]$ in the
t, x_{1}-plane

t, x_{2}-plane

x_{1}, x_{2}-plane

[3] 2b.) Graph the solution to the IVP $\left[\begin{array}{l}x_{1}(0) \\ x_{2}(0)\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$ in the
t, x_{1}-plane

t, x_{2}-plane

$$
x_{1}, x_{2} \text {-plane }
$$

$[2] 2$ c.) The equilibrium solution for this system of equations is $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=[]$.
[3] 2d.) $\frac{d x_{2}}{d x_{1}}=$ \qquad
[2] 2e.) Plot several direction vectors where the slope is 0 and where slope is vertical.
[10] 2f.) Graph several trajectories.

