HW 5: Look at comments before submitting HW 6 as HW 6 will be graded more rigourously.

In class quizzes are available again. While I recommentig them on each class day, the unofficial due date is Sunday (note there is no late penalty to allow schedule flexibility).

A function f is linear if $f(a \mathbf{x}+b \mathbf{y})=a f(\mathbf{x})+b f(\mathbf{y})$
Orequivalently f is linear if
1.) $f(a \mathbf{x})=a f(\mathbf{x})$ and
2.) $f(\mathbf{x}+\mathbf{y})=f(\mathbf{x})+f(\mathbf{y})$$\left\{\begin{array}{l}\text { LHS of linear } \\ \text { eq n is a } \\ \operatorname{lincar} \text { function }\end{array}\right.$

${ }_{5}$ Y Theorem: If f is linear, then $f(\mathbf{0})=\mathbf{0}$
 Proof: $f(\overrightarrow{\mathbf{0}})=\widehat{f(0 \cdot \overrightarrow{\mathbf{0}})=0 \cdot f(\mathbf{0})=\mathbf{0}, ~(0)}$

Example 1a.) $f: R \rightarrow R, f(x)=2 x$
Proof:
$f(a x+b y)=2(a x+b y)=2 a x+2 b y=a f(x)+b f(y)$
Example lb.) $f: R \rightarrow R, f(x)=2 x+3$ iNST
linear.
en f line, NロT
Proof: $f(2 \cdot 0)=f(0)=3$, but $2 f(0)=2 \cdot 3=6$. $^{\text {LN ERR }}$ Hence $f(2 \cdot 0) \neq 2 f(0)$

EN

Alternate Proof: $f(0+1)=f(1)=5$, but $f(0)+f(1)=3+5=8$. Hence $f(0+1) \neq f(0)+f(1)$

Note confusing notation: Most lines, $f(x)=m x+b$ are not linear functions.

Question: When is a line, $f(x)=m x+b$, a linear function? $\quad b=0$
$f(x)=m x$ is a linear fo
$f(a x+b y)=m(a x+b y)=\begin{array}{ll}a & m x+b m y \\ a & f(x)+b f(y)\end{array}$

Ex 1: $f(x)=[2] x$
EX 2: $f\left(\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]\right)=\left[\begin{array}{ll}2 & 0 \\ 1 & 1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]<$
Example 2.) $f: R^{2} \rightarrow R^{2}$,

$$
\begin{aligned}
& f: R^{2} \rightarrow R^{2}, \\
& \left.f\left(\left(x_{1}, x_{2}\right)\right)=\left(2 x_{1}, x_{1}+x_{2}\right)\right) \text { matrix }
\end{aligned}
$$

Proof: Let $\left.\mathbf{x}=\left(x_{1}, x_{2}\right), \mathbf{y}=\left(y_{1}, y_{2}\right) \underset{A(x+5 y)}{x}\right)$ $a \mathbf{x}+b \mathbf{y}=a\left(x_{1}, x_{2}\right)+b\left(y_{1}, y_{2}\right)=\left(a x_{1}, a x_{2}\right)+\left(b y_{1}, b y_{2}\right)=\square$ $\left(a x_{1}+b y_{1}, a x_{2}+b y_{2}\right)$
$f\left(a x_{1}+b y_{1}, a x_{2}+b y_{2}\right)$

$$
\begin{aligned}
& =\left(2\left(a x_{1}+b y_{1}\right), a x_{1}+b y_{1}+a x_{2}+b y_{2}\right) \\
& =\left(2 a x_{1}+2 b y_{1}, a x_{1}+a x_{2}+b y_{1}+b y_{2}\right) \\
& =\left(2 a x_{1}, a x_{1}+a x_{2}\right)+\left(2 b y_{1}, b y_{1}+b y_{2}\right) \\
& =a\left(2 x_{1}, x_{1}+x_{2}\right)+b\left(2 y_{1}, y_{1}+y_{2}\right) \\
& =a f\left(\left(x_{1}, x_{2}\right)\right)+b f\left(\left(y_{1}, y_{2}\right)\right)
\end{aligned}
$$

Example 3.) D : set of all differential functions \rightarrow set of all functions, $D(f)=f^{\prime}$

Proof:

$D(\underline{a f+b g})=(a f+b g)^{\prime}=a f^{\prime}+b g^{\prime}=a D(f)+b D(g)$

Example 4.) Given a, b real numbers,
I : set of all integrable functions on $[\mathrm{a}, \mathrm{b}] \rightarrow R$, $I(f)=\int_{a}^{b} f$
Proof: $I(s f+t g)=\overparen{\int_{a}^{b} s f+t g}=s \int_{a}^{b} f+t \int_{a}^{b} g=$ $s I(f)+t I(g)$

Example 5.) The inverse of a linear function is linear (when the inverse exists). Math $2560 \rightarrow \mathrm{Ch} 6$ Suppose $f^{-1}(x)=c, f^{-1}(y)=d$ LaPLace transform
Then $f(c)=x$ and $f(d)=y$ and $f(a c+b d)=a f(c)+b f(d)=a x+b y$.

Hence $f^{-1}(a x+b y)=a c+b d=a f^{-1}(x)+b f^{-1}(y)$.

$$
L(s f+t g)=a(s f+t g)^{\prime \prime \prime}+b(s f+t g)^{\prime}+c(s f+t g)
$$

$$
\begin{aligned}
& =s a f^{\prime \prime}+t a g^{\prime \prime}+s b f^{\prime}+t b g^{\prime}+s c f+t c g \\
& =s\left(a f^{\prime \prime}+b f^{\prime}+c f\right)+t\left(a g^{\prime \prime}+b g^{\prime}+c g\right)
\end{aligned}
$$

$$
=s L(f)+t L(g)
$$

$L(f)=\sqrt[a r^{\prime \prime}+b f^{\prime}+c f]{ }=0$
Consequence 1: If ϕ_{1}, ϕ_{2} are solutions to $a f^{\prime \prime}+b f^{\prime}+$ $c f=0$, then $3 \phi_{1}+5 \phi_{2}$ is also a solution to $a f^{\prime \prime}+b f^{\prime}+c f=0$,
Pf: Since ϕ_{1} \& ϕ_{2} are somsto,

$$
\begin{aligned}
& \Rightarrow a \phi_{i}^{\prime \prime}+b \phi_{i}^{\prime}+c \phi_{i}=0 \\
& \text { Let } L(f)=a f^{\prime \prime \prime}+b f^{\prime}+c f \\
& L\left(\phi_{i}\right)=a \phi_{i}^{\prime \prime}+b \phi_{i}^{\prime}+c \phi_{i}=0 \\
& L\left(3 \phi_{1}+S \phi_{2}\right)=3 L\left(\phi_{1}\right)+5 L\left(\phi_{2}\right)=3.0+5.0 \\
& =0
\end{aligned}
$$

Thm 3.2.2: If ϕ_{1} and ϕ_{2} are two solutions to a homogeneous linear differential equation

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0
$$

the $1 c_{1} \phi_{1}+c_{2} \phi_{2}$ s also a solution to this linear differental equation.
Let $\angle(y)=y^{\prime \prime}+p(t) y^{\prime}+\varepsilon(t) y$ Note L is a linear function (special case of example 6 Note f is a sin $\Longleftrightarrow L(f)=$

$$
\begin{array}{r}
\text { Note } f \text { is a sch } \Longrightarrow L\left(c_{1} \phi_{1}+c_{2} \phi_{2}\right)=c_{1} L\left(\phi_{1}\right)+c_{2} L\left(\phi_{c}\right)=c_{11}(0)+c_{1}(0) \\
5 \Rightarrow c_{1} \phi_{1} c_{1} \phi_{2} \text { is } 0 \text { sic }
\end{array}
$$

Consequence 1: If ϕ_{1}, ϕ_{2} are solutions to $a f^{\prime \prime}+b f^{\prime}+$ $c f=0$, then $3 \phi_{1}+5 \phi_{2}$ is also a solution to $a f^{\prime \prime}+b f^{\prime}+c f=0, \quad$ Le f $L(f)=a f^{\prime \prime}+b f^{\prime}+c f$
Proof: Since ϕ_{1}, ϕ_{2} are solutions to $a f^{\prime \prime}+b f^{\prime}+c f=0$, $L\left(\phi_{1}\right)=\underline{0}$ and $\underline{L\left(\phi_{2}\right)}=\underline{0}$.

Hence $L\left(\underline{3 \phi_{1}+5 \phi_{2}}\right)=3 L\left(\phi_{1}\right)+5 L\left(\phi_{2}\right)$

$$
=3(0)+5(0)=\underbrace{0}_{n}
$$

Thus $3 \phi_{1}+5 \phi_{2}$ is also a solution to $a f^{\prime \prime}+b f^{\prime}+c f=0 \square$
Thm 3.2.2: If ϕ_{1} and ϕ_{2} are two solutions to a homogeneous linear DE

$$
y^{\text {Lt Is }}+p(t) y^{\prime}+q(t) y=0^{\text {nuS }}{ }^{(*)}
$$

$c_{1} \phi_{1}+c_{2} \phi_{2}$ is also a solution to this linear DE.
Proof: $L(y)=y^{\prime \prime}+p(t) y^{\prime}+q(t) y$ is a linear function.
TAP function $y=h(t)$ is a solution to $(*)$ (ff $D(h)=0$.
\rightarrow Since ϕ_{i} are solutions to $\left(^{*}\right), L\left(\phi_{i}\right)=0$ for $i=1,2$.
$L\left(c_{1} \phi_{1}+c_{2} \phi_{2}\right)=c_{1} L\left(\phi_{1}\right)+c_{2} L\left(\phi_{2}\right)=c_{1}(0)+c_{2}(0)=0$
Thus $y=c_{1} \phi_{1}+c_{2} \phi_{2}$ is also a solution to $\left(^{*}\right)$. $£$ RMS
3.2 (A)Linear combinations of homoy sols are homog sobs to Linear homog $D E$
(B) Wronskiain

BI) The corf matrix used to find c_{1} Sc c_{2} when
B2) $\omega\left(\phi_{1}, \phi_{2}\right)\left(t_{0}\right) \neq 0$ $\Leftrightarrow \mid v P$ sola exists st is unison
Consequence 2: (relate to section 3,5
If ψ_{1} is a solution to $a f^{\prime \prime}+b f^{\prime}+c f=h \quad$, No To $\}$ if and ψ_{2} is a solution to $\left.a f^{\prime \prime}+b f^{\prime}+c f=k,\right\} \quad \begin{aligned} & h o n \\ & \boldsymbol{n} \neq 0,\end{aligned} \boldsymbol{k \neq 0}$ then $3 \psi_{1}+5 \psi_{2}$ is a solution to $a f^{\prime \prime}+b f^{\prime}+c f=3 h+5 k$,

$$
L(S)=a f^{\prime \prime}+6 d^{\prime}+c \neq
$$

Sin ψ_{1} s a solution to $\underbrace{a f^{\prime \prime}+b f^{\prime}+c f}_{\text {LH S }}=\frac{h,}{\text { RUS }} L\left(\psi_{1}\right)=h$.
Since ψ_{2} is a solution to $a f^{\prime \prime}+b f^{\prime}+c f=k, L\left(\psi_{2}\right)=k$.
Hence $\begin{aligned}\left(3 \psi_{1}+5 \psi_{2}\right) & =3 L\left(\psi_{1}\right)+5 L\left(\psi_{2}\right) \\ & =3 h+5 k\end{aligned}$
Thus $3 \psi_{1}+5 \psi_{2}$,is also a solution to

$$
\begin{aligned}
& 0 \psi_{2} \text { lis also a solution to } \\
& a f^{\prime \prime}+b f^{\prime}+c f=3 h+5 k
\end{aligned}
$$

Section 3.5: Solving linear non-homogeneous DE.
Example: Solve $y^{\prime \prime}-4 y^{\prime}-5 y=4 \sin (3 t)$
Step 1: Solve linear homo $D E$

$$
\begin{aligned}
y^{\prime \prime} & -4 y^{\prime}-5 y=0 \\
r^{2} & -4 r-5=0 \\
(r-s)(r+1) & =0 \Rightarrow r=5,-1 \\
\Rightarrow g e n c r a l & \text { homby sch is } \\
y & =c_{1} e^{5 t}+c_{2} e^{-t}
\end{aligned}
$$

 sch to non homos linger

$$
y^{\prime \prime}-4 y^{\prime}-5 y=\underbrace{4} \sin (3 t)
$$

Educated Guess (3.5 method)

$$
\begin{array}{r}
y=A \sin (3 t)+B \cos (3 t) \\
\Rightarrow y^{\prime}=3 A \cos (3 t)-3 B \sin (3 t) \\
y^{\prime \prime}=-9 A \sin (3 t)-9 B \cos (3 t) \\
\hline(-9 A \sin (3 t)-9 B \cos (3 t)) \\
-4(-3 B \sin (3 t)+3 A \cos (3 t)) \\
-5(A \sin (3 t)+B \cos (3 t) \\
=4 \sin (3 t)
\end{array}
$$

$$
\left.\begin{array}{l}
(-9 A-4(-3 B)-5 A) \sin (3 t) \\
+(-9 B-4(+3 A)-5 B) \cos (3 t) \\
=(-14 A+12 B) \sin (3 t) \\
+\frac{(-14 B-12 A) \cos (3 t}{4} \sin (3 t) \\
-14 A+12 B=4 \\
-14 B-12 A=0
\end{array}\right\}+t c
$$

Thm: Suppose $c_{1} \phi_{1}(t)+c_{2} \phi_{2}(t)$ is a general solution to

$$
a y^{\prime \prime}+b y^{\prime}+c y=0,
$$

If ψ is a solution to

$$
a y^{\prime \prime}+b y^{\prime}+c y=g(t)\left[^{*}\right],
$$

Then $\psi+c_{1} \phi_{1}(t)+c_{2} \phi_{2}(t)$ is also a solution to [*].
Moreover if γ is also a solution to [${ }^{*}$], then there exist constants c_{1}, c_{2} such that

$$
\gamma=\psi+c_{1} \phi_{1}(t)+c_{2} \phi_{2}(t)
$$

Or in other words, $\psi+c_{1} \phi_{1}(t)+c_{2} \phi_{2}(t)$ is a general solution to [*].

Proof:
Define $L(f)=a f^{\prime \prime}+b f^{\prime}+c f$.
Recall L is a linear function.
Let $h=c_{1} \phi_{1}(t)+c_{2} \phi_{2}(t)$. Since h is a solution to the differential equation, $a y^{\prime \prime}+b y^{\prime}+c y=0$,

Since ψ is a solution to $a y^{\prime \prime}+b y^{\prime}+c y=g(t)$,

We will now show that $\psi+c_{1} \phi_{1}(t)+c_{2} \phi_{2}(t)=\psi+h$ is also a solution to [*].

Since γ a solution to $a y^{\prime \prime}+b y^{\prime}+c y=g(t)$,

We will first show that $\gamma-\psi$ is a solution to the differential equation $a y^{\prime \prime}+b y^{\prime}+c y=0$.

Since $\gamma-\psi$ is a solution to $a y^{\prime \prime}+b y^{\prime}+c y=0$ and
$c_{1} \phi_{1}(t)+c_{2} \phi_{2}(t)$ is a general solution to $a y^{\prime \prime}+b y^{\prime}+c y=0$,
there exist constants c_{1}, c_{2} such that

$$
\gamma-\psi=
$$

Thus $\gamma=\psi+c_{1} \phi_{1}(t)+c_{2} \phi_{2}(t)$.

