HW 5: Look at comments before submitting HW 6 as HW 6 will be graded more rigourously. \checkmark

In class quizzes are available again. While I recommend doing them on each class day, the unofficial due date is Sunday (note there is no late penalty to allow schedule flexibility).

Linear matrix equation: $x \equiv b$ Linear differential equation: $y^{(n)}$ $+ p_1(t)y^{(n-1)} + \dots + p_{n-1}(t)y'$ $\rightarrow p_n(t)$ P 9 1 a + 10 Linear combination of vectors: $c_1 \mathbf{v_1} + \ldots + c_n \mathbf{v_n}$ Linear combination of functions: $c_1\phi_1 + \ldots + c_n\phi_n$ fnc Linear Functions sef for homo A function f is linear if $f(a\mathbf{x} + b\mathbf{y}) = af(\mathbf{x}) + bf(\mathbf{y})$ Or equivalently f is linear if 1.) $f(a\mathbf{x}) = af(\mathbf{x})$ and linear function 2.) $f(\mathbf{x} + \mathbf{y}) = f(\mathbf{x}) + f(\mathbf{y})$

Theorem: If f is linear, then
$$f(\mathbf{0}) = \mathbf{0}$$

Proof: $f(\mathbf{0}) = f(\mathbf{0} \cdot \mathbf{0}) = \mathbf{0} \cdot f(\mathbf{0}) = \mathbf{0}$
Example 1a.) $f: R \to R, f(x) = 2x$
Proof:
 $f(ax + by) = 2(ax + by) = 2ax + 2by = af(x) + bf(y)$
Example 1b.) $f: R \to R, f(x) = 2x + 3$ is NOT
linear.
Proof: $f(2 \cdot 0) = f(0) = 3$, but $2f(0) = 2 \cdot 3 = 6$.
Hence $f(2 \cdot 0) \neq 2f(0)$
Alternate Proof: $f(0 + 1) = f(1) = 5$, but
 $f(0) + f(1) = 3 + 5 = 8$. Hence $f(0 + 1) \neq f(0) + f(1)$
Note confusing notation: Most lines, $f(x) = mx + b$
are not linear functions.
Question: When is a line, $f(x) = mx + b$, a linear function?
 $b = O$
 $f(x) = m \times 15$ f interaction
 $f(x) = m \times 15$ f interaction
 $f(x) = m \times 15$ f interaction

$$\begin{aligned} \mathbf{x} & \text{if } \mathbf{f}(x_{1}) = \mathbf{z}_{2} \mathbf{x} \\ \mathbf{x} & \mathbf{z} : \mathbf{f} \left(\left[\mathbf{z}_{x_{1}}^{\prime} \right] \right) = \left[\mathbf{z}_{1}^{\prime} \right] \left[\mathbf{z}_{1}^{\prime} \right] \left[\mathbf{x}_{1}^{\prime} \right] \\ \text{Example 2.) } f : R^{2} \to R^{2}, \\ f((x_{1}, x_{2})) &= (2x_{1}, x_{1} + x_{2}) \end{aligned}$$

$$\begin{aligned} \text{Proof: Let } \mathbf{x} &= (x_{1}, x_{2}), \mathbf{y} = (y_{1}, y_{2}) \end{aligned}$$

$$\begin{aligned} \mathbf{x} + b\mathbf{y} &= a(x_{1}, x_{2}) + b(y_{1}, y_{2}) = (ax_{1}, ax_{2}) + (by_{1}, by_{2}) = \mathbf{z} \end{aligned}$$

$$\begin{aligned} a\mathbf{x} + b\mathbf{y} &= a(x_{1}, x_{2}) + b(y_{1}, y_{2}) = (ax_{1}, ax_{2}) + (by_{1}, by_{2}) = \mathbf{z} \end{aligned}$$

$$\begin{aligned} a\mathbf{x} + b\mathbf{y} &= a(x_{1}, x_{2}) + b(y_{1}, y_{2}) = (ax_{1}, ax_{2}) + (by_{1}, by_{2}) = \mathbf{z} \end{aligned}$$

$$\begin{aligned} a\mathbf{x} + b\mathbf{y} &= a(x_{1}, x_{2}) + b(y_{1}, y_{2}) = (ax_{1}, ax_{2}) + (by_{1}, by_{2}) = \mathbf{z} \end{aligned}$$

$$\begin{aligned} a\mathbf{z} + b\mathbf{y} &= a(x_{1}, x_{2}) + b(y_{1}, ax_{1} + ax_{2} + by_{2}) \end{aligned}$$

$$\begin{aligned} = (2ax_{1} + by_{1}, ax_{1} + ax_{2}) + (2by_{1}, by_{1} + by_{2}) \end{aligned}$$

$$\begin{aligned} = a(2x_{1}, ax_{1} + ax_{2}) + b(2y_{1}, y_{1} + y_{2}) \end{aligned}$$

$$\begin{aligned} = af((x_{1}, x_{2})) + bf((y_{1}, y_{2})) \end{aligned}$$

Example 3.) D : set of all differential functions \rightarrow set of all functions, D(f) = f'

Proof: D(af+bg) = (af+bg)' = af'+bg' = aD(f)+bD(g)

Example 4.) Given
$$a, b$$
 real numbers,
 $I :$ set of all integrable functions on $[a, b] \rightarrow R$,
 $I(f) = \int_{a}^{b} f$
Proof: $I(sf + tg) = \int_{a}^{b} sf + tg = s \int_{a}^{b} f + t \int_{a}^{b} g = sI(f) + tI(g)$
Example 5.) The inverse of a linear function is linear
(when the inverse exists). Math 2560 \neg C46
Suppose $f^{-1}(x) = c, f^{-1}(y) = d$
Laflace
transform
Then $f(c) = x$ and $f(d) = y$ and
 $f(ac + bd) = af(c) + bf(d) = ax + by$.
Hence $f^{-1}(ax + by) = ac + bd = af^{-1}(x) + bf^{-1}(y)$.
Example 6.) D : set of all twice differential functions
 \rightarrow set of all functions, $L(f) = (f' + if) + cf$
Proof:
 $L(sf + tg) = a(sf + tg)'' + b(sf + tg)' + c(sf + tg)$
 $= saf'' + tag'' + sbf' + tbg' + scf + tcg$
 $= s(af'' + bf' + cf) + t(ag'' + bg' + cg)$
 $= sL(f) + tL(g)$

af''+bf'+cf=0L(f) =

Consequence 1: If ϕ_1, ϕ_2 are solutions to af'' + bf' + cf = 0, then $3\phi_1 + 5\phi_2$ is also a solution to af'' + bf' + cf = 0, $pf: Since \phi, f \phi_2$ are solutions to af'' + 5f' + cf = 0, $pf: f + 5\phi_1 + c\phi_2 = 0$, let L(f) = af'' + bf' + cf let L(f) = af'' + bf' + cflet L(f) = af'' + bf' + cf' +

Thm 3.2.2: If ϕ_1 and ϕ_2 are two solutions to a <u>homogeneous</u> linear differential equation

$$y'' + p(t)y' + q(t)y = 0$$

then $c_1\phi_1 + c_2\phi_2$ is also a solution to this linear different-
ial equation.
Let $L(y) = y'' + p(t)y' + \xi(t)y'$
Note L is a linear function
(speciel case of example 6
Note f is a solution $L(f) = 0$
Note f is a solution $L(f) = 0$
L(c, d, t c, d_2) = c, $L(f) + c_2 L(d_2) = c_4(0) + c_2(0)$
 $5^{32} - 5^{44} -$

Consequence 1: If
$$\phi_1, \phi_2$$
 are solutions to $af'' + bf' + cf = 0$, then $3\phi_1 + 5\phi_2$ is also a solution to
 $af'' + bf' + cf = 0$,
 $L(f) = af'' + bf' + cf = 0$,
 $L(\phi_1) = 0$ and $L(\phi_2) = 0$.
Hence $L(3\phi_1 + 5\phi_2) = 3L(\phi_1) + 5L(\phi_2)$
 $= 3(0) + 5(0) = 0$.
Thus $3\phi_1 + 5\phi_2$ is also a solution to $af'' + bf' + cf = 0$ **1**
Thm 3.2.2: If ϕ_1 and ϕ_2 are two solutions to a homogeneous
linear DE
 $y'' + p(t)y' + q(t)y = 0$ (*)
 $c_1\phi_1 + c_2\phi_2$ is also a solution to this linear DE.
Proof: $L(y) = y'' + p(t)y' + q(t)y$ is a linear function.
Tc function $y = h(t)$ is a solution to (*) (ff) $(h) = 0$.
Since ϕ_i are solutions to (*), $L(\phi_i) = 0$ for $i = 1, 2$.
 $L(c_1\phi_1 + c_2\phi_2) = c_1L(\phi_1) + c_2L(\phi_2) = c_1(0) + c_2(0) = 0$
Thus $y = c_1\phi_1 + c_2\phi_2$ is also a solution to (*).

3.2 Dimeas combinations of
homog sets are homog such to
Linear homog DE
B Wronskian
B D Re coef matrix isod
h find c, i c when
solving in P
B2 W(d, d) (fo)
$$\neq$$
 O
B2 W(d, d) (fo) \neq O
B2 W(d, d) (fo) \neq O
E V P solv exists it is unifor
Consequence 2: (relate to section 3.5 your of
the 3.5 your of
then $3\psi_1 + 5\psi_2$ is a solution to $af'' + bf' + cf = h$
Since ψ_2 is a solution to $af'' + bf' + cf = h$. $L(\psi_1) = h$.
Since ψ_2 is a solution to $af'' + bf' + cf = h$, $L(\psi_2) = k$.
Hence $L(3\psi_1 + 5\psi_2) = 3L(\psi_1) + 5L(\psi_2)$
 $Lus = 3h + 5k$
Thus $3\psi_1 + 5\psi_2$ is also a solution to
 $af'' + bf' + cf = 3h + 5k$

Section 3.5: Solving linear non-homogeneous DE. Example: Solve y'' - 4y' - 5y = 4sin(3t)Step 11 Solve linear homog DE $\frac{-}{y'' - 4y' - 5y = 0}$ $\frac{-}{t^2 - 4t - 5 = 0}$ $(r-s)(r+i)=0 \implies r=S,-i$ $(r-s)(r+i)=0 \implies r=S,-i$ =) general homogonomous $<math display="block">f=c,e^{s+1}+c_2e^{-t}$ schis

Example (cont): Solvin 1/ - 41 - Mon4sin(3t) 9 Solvin 10 non homes linear DE y'' - 4y' - 5y = 4sin(3t)Educated Guess (3.5 method) Hen plus in $y = A \sin(3t) + B \cos(3t)$ $-3y' = 3A \cos(3t) - 3B \sin(3t)$ y" =- 9 A sin (3+) = 9B cos: (3+) · (-9Asin(3+) - 9B cos(3+)) - 4 (-3B sm (3+) + 3A (os (3+)) -5(Asin(3t) + Bcos(3t))= 4sin(3t)

Example (cont): Solv $y'' - 4y' - 5y \neq 4sin(3t)$ (-9A-4(-3B)-5A) sin(3+) $+(-9B-4(+3A)-5B)\cos(3+)$ = (-14 A + 12 B) s in (3+)+ (-14B-12A) cos (3+ = 4 s in (3+) +()(os(3f))-14A + 12B = 42 = 42 = 14B - 12A = 0

Thm: Suppose $c_1\phi_1(t) + c_2\phi_2(t)$ is a general solution to

$$ay'' + by' + cy = 0,$$

If ψ is a solution to

$$ay'' + by' + cy = g(t) \ [*],$$

Then $\psi + c_1\phi_1(t) + c_2\phi_2(t)$ is also a solution to [*].

Moreover if γ is also a solution to [*], then there exist constants c_1, c_2 such that

$$\gamma = \psi + c_1\phi_1(t) + c_2\phi_2(t)$$

Or in other words, $\psi + c_1\phi_1(t) + c_2\phi_2(t)$ is a general solution to [*].

Proof:

Define
$$L(f) = af'' + bf' + cf$$
.

Recall L is a linear function.

Let $h = c_1 \phi_1(t) + c_2 \phi_2(t)$. Since h is a solution to the differential equation, ay'' + by' + cy = 0,

Since ψ is a solution to ay'' + by' + cy = g(t),

We will now show that $\psi + c_1\phi_1(t) + c_2\phi_2(t) = \psi + h$ is also a solution to [*].

Since γ a solution to ay'' + by' + cy = g(t),

We will first show that $\gamma - \psi$ is a solution to the differential equation ay'' + by' + cy = 0.

Since $\gamma - \psi$ is a solution to ay'' + by' + cy = 0 and $c_1\phi_1(t) + c_2\phi_2(t)$ is a general solution to ay'' + by' + cy = 0,

there exist constants c_1, c_2 such that

$$\gamma - \psi = _$$

Thus $\gamma = \psi + c_1 \phi_1(t) + c_2 \phi_2(t)$.