A very elementary introduction to proofs

Part 1

Example: Prove a function is $1: 1$

By Dr. Isabel Darcy,
Dept of Mathematics and AMCS,
University of Iowa

$$
\begin{gathered}
\text { If and on } y \text { if } \\
f: A \rightarrow B \text { is } 1: 1 \text { (eff } f\left(x_{1}\right)=f\left(x_{2}\right) \text { implies } x_{1}=x_{2} .
\end{gathered}
$$

Thus to show a function is $1: 1$, check if

$$
f\left(x_{1}\right)=f\left(x_{2}\right) \text { implies } x_{1}=x_{2} \text {. }
$$

Hypothesis: $f\left(x_{1}\right)=f\left(x_{2}\right)$. Conclusion $x_{1}=x_{2}$.
Hypothesis implies conclusion.

$$
\begin{gathered}
\sqrt{p} \text { implies (q.) } \\
\mathbb{P} \Rightarrow q \text {. }
\end{gathered}
$$

Note a statement, $p \Rightarrow q$, is true if whenever the hypothesis p holds, then the conclusion q also holds.

To prove that a statement is true:
(1) Assume the hypothesis holds.
(2) Provethe conclusion must hold.

Ex: To prove a function is $1: 1$:
(1) Assume $f\left(x_{1}\right)=f\left(x_{2}\right)$
(2) Do some algebra to prove $x_{1}=x_{2}$.

To show a function is $1: 1$, check if

$$
f\left(x_{1}\right)=f\left(x_{2}\right) \text { mplies } x_{1}=x_{2} \text {. }
$$

Example: Show $f(x)=\ln (x)$ is $1: 1$
Proof: Suppose $f\left(x_{1}\right)=f\left(x_{2}\right)$

$$
\begin{aligned}
& \ln \left(x_{1}\right)=\ln \left(x_{2}\right) \\
& e^{\ln \left(x_{1}\right)}=e^{\ln \left(x_{2}\right)} \Rightarrow \quad x_{1}=x_{2}
\end{aligned}
$$

To show a function is $1: 1$, check if

$$
f\left(x_{1}\right)=f\left(x_{2}\right) \text { implies } x_{1}=x_{2}
$$

Example: Show $f(x)=\ln (x)$ is $1: 1$
Proof:

$$
\ln \left(x_{1}\right)=\ln \left(x_{2}\right) \Rightarrow e^{\ln \left(x_{1}\right)}=e^{\ln \left(x_{2}\right)} \Rightarrow x_{1}=x_{2} .
$$

To show a function is $1: 1$, check if

$$
f\left(x_{1}\right)=f\left(x_{2}\right) \text { implies } x_{1}=x_{2} .
$$

Example: Show $f(x)=\ln (x)$ is $1: 1$
Proof: Suppose the hypothesis:
this work
Suppose $f\left(x_{1}\right)=f\left(x_{2}\right) \leftarrow K_{\text {Yo v }}{ }^{\text {now }}{ }_{\text {a }}{ }_{\text {w }}$, th this
That is, suppose $\ln \left(x_{1}\right)=\ln \left(x_{2}\right) \cdot \longleftarrow$ re word Prove the conclusion holds:

Claim: $x_{1}=x_{2}$.
$\ln \left(x_{1}\right)=\ln \left(x_{2}\right) \Rightarrow e^{\ln \left(x_{1}\right)}=e^{\ln \left(x_{2}\right)} \Rightarrow x_{1}=x_{2}$.

Some notation:

$\forall=$ for all
$\exists=$ there exists
$[p \Rightarrow q]$ is equivalent to $\forall p p q$ holds:
That is, for everything satisfying the hypothesis p, the conclusion q must hold.
$f: A \rightarrow B$ is $1: 1 \mathrm{iff}$

$$
f\left(x_{1}\right)=f\left(x_{2}\right) \text { implies } x_{1}=x_{2} .
$$

$f: A \rightarrow B$ is $1: 1 \mathrm{iff}$
$\forall x_{1}$ and $\forall x_{2}$ such that $f\left(x_{1}\right)=f\left(x_{2}\right)$, we have $x_{1}=x_{2}$.

