[10] 1.) By giving a specific example, prove that $f: R \rightarrow R, f(x)=e^{x}$ is not onto.
2.) Circle T for true and F for false. Note that the answer to 2 a is true.
[3] 2a.) In more advanced math classes, you may be required to provide many more details when proving a function is onto.
[4] 2b.) Suppose ϕ is a solution to the equation, $y^{\prime}+p(t) y=g(t)$, then 2ϕ must also be a solution to $y^{\prime}+p(t) y=g(t)$.
[4] 2c.) Suppose ϕ is a solution to the equation, $y^{\prime}+p(t) y^{2}=0$, then 2ϕ must also be a solution to $y^{\prime}+p(t) y^{2}=0$.
[4] 2d.) Suppose ϕ is a solution to the equation, $y^{\prime}+p(t) y=0$, then 2ϕ must also be a solution to $y^{\prime}+p(t) y=0$.
[15] 3.) Draw the direction field for $y^{\prime}=\frac{1}{2} y+1$. Determine if there are any equilibrium solutions. If so, determine if the equilibrium solution(s) are stable, unstable or semistable.
[15] 4.) Solve the following initial value problem: $y^{\prime} y=t+3 t y^{2}, y(0)=-2$

Answer 4.)
5.) Find the general solutions for the following three differential equations.
[15] 5A.) $2 y^{\prime \prime}-3 y^{\prime}+5 y=0$

Answer 5A.)
[15] 5B.) $y^{\prime \prime}+6 y^{\prime}+9 y=0$

Answer 5B) \qquad
[15] 5C.) $3 y^{\prime \prime}\left(y^{\prime}\right)^{2}=1$

