[10] 1.) By giving a specific example, prove that $f: R \rightarrow R, f(x)=e^{x}$ is not onto.
Answer 1: We know that $e^{x}>0$ for all x. Thus there is no x such that $f(x)=e^{x}=-1$. Hence -1 is not in the image of f.

Answer 2: Suppose $f(x)=-1$. Then $e^{x}=-1$. But then $x=\ln (-1)$. But $\ln (-1)$ is not defined. Thus -1 is not in the image of f.
2.) Circle T for true and F for false. Note that the answer to 2 a is true.
[3] 2a.) In more advanced math classes, you may be required to provide many more details when proving a function is onto.
[4] 2b.) Suppose ϕ is a solution to the equation, $y^{\prime}+p(t) y=g(t)$, then 2ϕ must also be a solution to $y^{\prime}+p(t) y=g(t)$.
[4] 2c.) Suppose ϕ is a solution to the equation, $y^{\prime}+p(t) y^{2}=0$, then 2ϕ must also be a solution to $y^{\prime}+p(t) y^{2}=0$.
[4] 2d.) Suppose ϕ is a solution to the equation, $y^{\prime}+p(t) y=0$, then 2ϕ must also be a solution to $y^{\prime}+p(t) y=0$.
[15] 3.) Draw the direction field for $y^{\prime}=\frac{1}{2} y+1$. Determine if there are any equilibrium solutions. If so, determine if the equilibrium solution(s) are stable, unstable or semistable.

Equilibrium solution $=$ constant solution. Thus $y^{\prime}=0$.
$\frac{1}{2} y+1=0$ implies $\frac{1}{2} y=-1$. Thus $y=-2$ is the equilibrium solution.
[15] 4.) Solve the following initial value problem: $y^{\prime} y=t+3 t y^{2}, y(0)=-2$
$y^{\prime} y=t+3 t y^{2}$
$\frac{d y}{d t} y=t\left(1+3 y^{2}\right)$
$\frac{y d y}{1+3 y^{2}}=t d t$
$\int \frac{y d y}{1+3 y^{2}}=\int t d t$
$\frac{1}{6} \int \frac{6 y d y}{1+3 y^{2}}=\int t d t$
$\frac{1}{6} \ln \left|1+3 y^{2}\right|=\frac{1}{2} t^{2}+C$
$\ln \left|1+3 y^{2}\right|=3 t^{2}+C$
$e^{l n\left|1+3 y^{2}\right|}=e^{3 t^{2}+C}$
$\left|1+3 y^{2}\right|=e^{3 t^{2}} e^{C}$
$1+3 y^{2}= \pm e^{C} e^{3 t^{2}}$
$1+3 y^{2}=C e^{3 t^{2}}$
$3 y^{2}=C e^{3 t^{2}}-1$
$y^{2}=\frac{C e^{3 t^{2}}-1}{3}$
$y= \pm \sqrt{\frac{C e^{3 t^{2}-1}}{3}}$
$y(0)=-2: \quad-2=-\sqrt{\frac{C e^{0}-1}{3}}=-\sqrt{\frac{C-1}{3}}$
$4=\frac{C-1}{3}$ implies $12=C-1$ implies $C=13$.

Answer 4.) $y=-\sqrt{\frac{13 e^{3 t^{2}-1}}{3}}$
5.) Find the general solutions for the following three differential equations.
[15] 5A.) $2 y^{\prime \prime}-3 y^{\prime}+5 y=0$
$y=e^{r t}$. Then $y^{\prime}=r e^{r t}$ and $y^{\prime \prime}=r^{2} e^{r t}$.
$2 r^{2} e^{r t}-3 r e^{r t}+5 e^{r t}=0$ implies $2 r^{2}-3 r+5=0$
$2 r^{2}-3 r+5=0$ implies $r=\frac{3 \pm \sqrt{9-4(2)(5)}}{4}=\frac{3 \pm \sqrt{9-40}}{4}=\frac{3 \pm \sqrt{-31}}{4}=\frac{3 \pm \sqrt{-31}}{4}=\frac{3}{4} \pm i \frac{\sqrt{31}}{4}$

Answer 5A.) $y=c_{1} e^{\frac{3 t}{4}} \cos \left(\frac{\sqrt{31}}{4} t\right)+c_{2} e^{\frac{3 t}{4}} \sin \left(\frac{\sqrt{31}}{4} t\right)$
[15] 5B.) $y^{\prime \prime}+6 y^{\prime}+9 y=0$
$r^{2}+6 r+9=0$
$(r+3)^{2}=0$ implies $r=-3$

Answer 5B) $y=c_{1} e^{-3 t}+c_{2} t e^{-3 t}$
[15] 5C.) $3 y^{\prime \prime}\left(y^{\prime}\right)^{2}=1$
Let $v y^{\prime}$. Then $v^{\prime}=y^{\prime \prime}$.
$3 v^{\prime}(v)^{2}=1$ implies $3 \frac{d v}{d t}(v)^{2}=1$
$3 d v(v)^{2}=d t$
$\int 3(v)^{2} d v=\int d t$
$v^{3}=t+C_{1}$. Thus $v=\left(t+C_{1}\right)^{\frac{1}{3}}$
$\frac{d y}{d t}=\left(t+C_{1}\right)^{\frac{1}{3}}$
$d y=\left(t+C_{1}\right)^{\frac{1}{3}} d t$
$\int d y=\int\left(t+C_{1}\right)^{\frac{1}{3}} d t$
$y=\frac{3}{4}\left(t+C_{1}\right)^{\frac{4}{3}}+C_{2}$

Answer 5C. $) \quad y=\frac{3}{4}\left(t+C_{1}\right)^{\frac{4}{3}}+C_{2}$

