22M:100:001 (MATH:3600:0001) Quiz 2
April 3, 2013
1.) Determine which of the following sets of vectors are linearly dependent versus linearly independent. Circle the correct answer
$[10]$ 1i.) $\left\{\binom{1}{2},\binom{-1}{3},\binom{4}{5}\right\}$
a.) linearly dependent

The span of these three vectors is 2-dimensional. Any collection of more than two vectors spanning a 2-dimensional space must be linearly dependent
$\left[\begin{array}{ll}10] & \text { ii. })\end{array}\left\{\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right),\left(\begin{array}{l}-1 \\ -2 \\ -3\end{array}\right)\right\}\right.$
a.) linearly dependent

The second vector is a multiple of the first vector.
[10] 1iii.) $\left\{\left(\begin{array}{l}1 \\ 2 \\ 4\end{array}\right),\left(\begin{array}{c}-1 \\ 3 \\ 4\end{array}\right)\right\}$
b.) linearly independent

There are only two vectors and the second vector is NOT a multiple of the first vector.
[10] 1iv.) $\left\{\left(\begin{array}{l}1 \\ 2 \\ 4\end{array}\right),\left(\begin{array}{l}1 \\ 3 \\ 2\end{array}\right),\left(\begin{array}{l}2 \\ 5 \\ 6\end{array}\right)\right\}$
a.) linearly dependent
$\left(\begin{array}{l}1 \\ 2 \\ 4\end{array}\right)+\left(\begin{array}{l}1 \\ 3 \\ 2\end{array}\right),=\left(\begin{array}{l}2 \\ 5 \\ 6\end{array}\right)$ or $\left(\begin{array}{lll}1 & 1 & 2 \\ 2 & 3 & 5 \\ 4 & 2 & 6\end{array}\right) \sim\left(\begin{array}{ccc}1 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & -2 & 2\end{array}\right)$
$\left[\begin{array}{ll}10] & 1 v .)\end{array}\left\{\left(\begin{array}{l}1 \\ 2 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 3 \\ 0\end{array}\right),\left(\begin{array}{l}2 \\ 3 \\ 6\end{array}\right)\right\}\right.$
b.) linearly independent

Note the first two vectors span a 2-dimensional space that does not contain the third vector. Hence these 3 vectors are linearly independent.

Alternatively $\left(\begin{array}{lll}1 & 1 & 2 \\ 2 & 3 & 3 \\ 0 & 0 & 6\end{array}\right) \sim\left(\begin{array}{ccc}1 & 1 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 6\end{array}\right)$
2.) If $A\binom{1}{2}=\binom{5}{5}, A\binom{2}{1}=\binom{4}{4}, A\binom{2}{2}=\binom{6}{6}, A\binom{2}{3}=\binom{8}{8}, A\binom{3}{2}=\binom{7}{7}$.
[10] 2a.) An eigenvalue of A is 3
$[15] 2$ b.) 4 eigenvectors corresponding to this eigenvalue are $\binom{2}{2},\binom{1}{1},\binom{-1}{-1},\binom{\pi}{\pi}$
Any non-zero scalar multiple of $\binom{2}{2}$ is an eigenvector of A with eigenvalue 3 .
FYI: $A\binom{1}{0}=A\left[\binom{2}{2}-\binom{1}{2}\right]=A\binom{2}{2}-A\binom{1}{2}=\binom{6}{6}-\binom{5}{5}=\binom{1}{1}$
$A\binom{0}{1}=A\left[\binom{2}{2}-\binom{2}{1}\right]=A\binom{2}{2}-A\binom{2}{1}=\binom{6}{6}-\binom{4}{4}=\binom{2}{2}$
Thus $A=\left(\begin{array}{ll}1 & 2 \\ 1 & 2\end{array}\right)$. Since the columns (and similarly the rows) are not linearly independent, 0 is also an eigenvalue of A.

Note $A=\left(\begin{array}{ll}1 & 2 \\ 1 & 2\end{array}\right)\binom{2}{-1}=\binom{0}{0}=0\binom{2}{-1}$
Thus an alternate answer is
[10] 2a.) An eigenvalue of A is \qquad
$[15]$ 2b.) 4 eigenvectors corresponding to this eigenvalue are $\binom{2}{-1},\binom{-2}{1},\binom{-4}{2},\binom{2 \pi}{-\pi}$
Any non-zero scalar multiple of $\binom{2}{-1}$ is an eigenvector of A with eigenvalue 0 .
[15] 3a.) Find the eigenvalues of $A=\left(\begin{array}{cc}1 & 1 \\ 2 & -1\end{array}\right)$
[10] 3b.) Find one eigenvector corresponding to each eigenvalue.
$|A-r I|=\left|\begin{array}{cc}1-r & 1 \\ 2 & -1-r\end{array}\right|=(1-r)(-1-r)-2=r^{2}-3=0$. Thus $r= \pm \sqrt{3}$
$A-r I=\left(\begin{array}{cc}1-(\pm \sqrt{3}) & 1 \\ 2 & -1-(\pm \sqrt{3})\end{array}\right)=\left(\begin{array}{cc}1 \mp \sqrt{3} & 1 \\ 2 & -1 \mp \sqrt{3}\end{array}\right)$
$\operatorname{Note}\left(\begin{array}{cc}1 \mp \sqrt{3} & 1 \\ 2 & -1 \mp \sqrt{3}\end{array}\right)\binom{1}{-1 \pm \sqrt{3}}=\binom{0}{0}$
Thus a nonzero solution to $(A-r I) \mathbf{x}=\mathbf{0}$ is $\binom{1}{-1 \pm \sqrt{3}}$
An e. value of A is $\underline{\sqrt{3}} \&$ an e. vector corresponding to this e. value is $\binom{1}{-1+\sqrt{3}}$
An e. value of A is $_\sqrt{3} \&$ an e. vector corresponding to this e. value is $\binom{1}{-1-\sqrt{3}}$

