Math 3600 Differential Equations Exam \#1
March 2, 2016
[20] 1.) Solve $y^{\prime \prime}-6 y^{\prime}+9=0, y(0)=2, y^{\prime}(0)=4$.
\qquad
2.) Circle T for true and F for false.
[4] 2a.) The equation $\ln (t) y^{\prime}=\frac{t}{t+1}-y\left(\sin t^{2}\right)$ is a linear differential equation.
[4] 2b.) The equation $y^{\prime}+y=y^{2}$ is a linear differential equation.
T
F
[4] 2c.) Suppose $y=\phi_{1}(t)$ and $y=\phi_{2}(t)$ are solutions to $a y^{\prime \prime}+b y^{\prime}+c y=0$. If $y=h(t)$ is also a solution to $a y^{\prime \prime}+b y^{\prime}+c y=0$, then there exists constants c_{1} and c_{2} such that $h(t)=c_{1} \phi_{1}(t)+c_{2} \phi_{2}(t)$.
[4] 2d.) Suppose $y=\phi_{1}(t)$ and $y=\phi_{2}(t)$ are linearly independent solutions to $a y^{\prime \prime}+$ $b y^{\prime}+c y=0$. If $y=h(t)$ is also a solution to $a y^{\prime \prime}+b y^{\prime}+c y=0$, then there exists constants c_{1} and c_{2} such that $h(t)=c_{1} \phi_{1}(t)+c_{2} \phi_{2}(t) . \quad \mathrm{T} \quad \mathrm{F}$
[4] 3.) By giving a specific counter-example, prove that $y=\ln (x)$ is not a linear function.
[20] 4.)

4a.) Circle the differential equation whose direction field is given above.
i.) $y^{\prime}=y^{2}$
ii.) $y^{\prime}=(y+2)^{2}$
iii.) $y^{\prime}=y(y+2)^{2}$
iv.) $y^{\prime}=y(y+2)$
v.) $y^{\prime}=\frac{y}{y+2}$
vi.) $y^{\prime}=\frac{y+2}{y}$
vii.) $y^{\prime}=\frac{y^{2}}{t}$
viii.) $y^{\prime}=t \sqrt{y}$
ix.) $y^{\prime}=t y^{2}$

4b.) Draw the solution to the differential equation whose direction field is given above that satisfies the initial condition $y(1)=-3$.

4c.) Does the differential equation whose direction field is given above have any equilibrium solutions? If so, state whether they are stable, semi-stable or unstable.
[20] 5.) Solve: $y^{\prime}=e^{4 t}-\frac{y}{t}$
[20] 6.) Choose one of the following 2 problems. If you do not choose your best problem, I will substitute the other problem, but with a 2 point penalty (if it improves your grade). Circle the letter corresponding to your chosen problem: A B

6A.) Show that $\phi(t)=\sum_{k=2}^{\infty} \frac{3(-1)^{k} t^{k}}{k!}$ converges for all t and show that $\phi(t)=\sum_{k=2}^{\infty} \frac{3(-1)^{k} t^{k}}{k!}$ is a solution to $y^{\prime}=3 t-y$.

6B.) Show by induction that for Picard's iteration method, $\phi_{n}(t)=\sum_{k=1}^{n} \frac{3(-1)^{k+1} t^{k+1}}{(k+1)!}$ approximates the solution to the initial value problem, $y^{\prime}=3 t-y, y(0)=0$ where $\phi_{1}(t)=\frac{3 t^{2}}{2}$. You may use the proof outline below or write it from scratch.

Proof by induction on n.
For $n=1, \quad \sum_{k=1}^{1} \frac{3(-1)^{k+1} t^{k+1}}{(k+1)!}=$

Suppose for $n=j, \quad \phi_{j-1}(t)=\sum_{k=1}^{j-1} \frac{3(-1)^{k+1} t^{k+1}}{(k+1)!}$

Then by Picard's iteration method, $\phi_{j}=$

