
22M:100 (MATH:3600:0001) Exam 2
April 20, 2016 Show all work

[10] 1.) Find the radius of convergence of the power series
∑∞

n=2
(−2)n(x−4)n

n2

an+1

an
=
(
(−2)n+1(x−4)n+1

(n+1)2

) (
n2

(−2)n(x−4)n
)

= (−2)(x−4)(n2)
n2+2n+1

limn→∞
|(−2)(x−4)(n2)|
|n2+2n+1| = |2(x− 4)| < 1.

Thus the series converges for all x such that |x− 4| < 1
2
.

Hence the radius of convergence is 1
2
.

Note, you were not asked to find all x for which the above power series converges, but we will do so anyway.

We know the series diverges for all x such that |x− 4| > 1
2
. Thus we only need to check the endpoints of

[4− 1
2
, 4 + 1

2
] = [7

2
, 9
2
]

For x = 7
2
,
∑∞

n=2
(−2)n(x−4)n

n2 =
∑∞

n=2
(−2)n( 7

2
−4)n

n2 =
∑∞

n=2
(−2)n(− 1

2
)n

n2 =
∑∞

n=2
1
n2

For x = 9
2
,
∑∞

n=2
(−2)n(x−4)n

n2 =
∑∞

n=2
(−2)n( 9

2
−4)n

n2 =
∑∞

n=2
(−2)n( 1

2
)n

n2 =
∑∞

n=2
(−1)n
n2

Both these series converge and thus the series
∑∞

n=2
(−2)n(x−4)n

n2 converges for all x ∈ [7
2
, 9
2
]

Thus if f(x) =
∑∞

n=2
(−2)n(x−4)n

n2 , the largest possible domain for f is [7
2
, 9
2
]

2.) Circle T for True and F for false.

[3] 2a.) Suppose f(x) = Σan(x − 4)n has a radius of convergence = r about the point 4. Then we can
define the domain of f to be (4− r, 4 + r).

T

[3] 2b.) Suppose f(x) = Σan(x − 4)n has a radius of convergence = r about the point 4. Then we can
define the domain of f to be (r − 4, r + 4).

F

[3] 2c.) The radius of convergence of the power series for f(x) = x
(x2+9)(x+5)

about the point x0 = 2 is at

least as large as
√

13.
T

[3] 2d.) Let f(x) = x
(x2+9)(x+5)

. Then x
(x2+9)(x+5)

= Σ∞n=0an(x − 2)n where an = f (n)(2)
n!

for all values of

x ∈ (2−
√

13, 2 +
√

13).
T



3.) Given the differential equation 2xy′′ − (1 + x)y′ + y = 0,

[5] i.) Determine if x = 0 is an ordinary point, regular singular point or irregular singular point.

Extra stuff: y′′ −
(
1+x
2x

)
y′ +

(
1
2x

)
y = 0,

Note since the coefficients are rational functions, the only values that are singular occur when either of the
denominators of the coefficients of y′ and y are 0.

Setting 2x = 0 implies x = 0 is the only singular point. All other points are ordinary points.

False attempt to covert equation into an Euler equation where coefficient of y′′ is x2 and coefficient of y′

is αx:

x2y′′ −
(
x(1+x)

2x

)
xy′ +

(
x2

2x

)
y = x2y′′ −

(
(1+x)

2

)
xy′ +

(
x
2

)
y = 0,

Answer: y′′−
(
1+x
2x

)
y′+

(
1
2x

)
y = 0 implies x = 0 is a singular point since setting denominators = 0 implies

2x = 0 implies x = 0.

limx→0
−x(1+x)

2x
= limx→0

−(1+x)
2

= −1
2

limx→0
x2

2x
= limx→0

x
2

= 0

Since both limits are finite, x = 0 is a regular singular point.

[15] ii.) Determine the indicial equation, the roots of the indicial equation, and the recurrence relation.

Let y =
∑∞

n=0 anx
n+r where a0 6= 0.

Then y′ =
∑∞

n=0(n+ r)anx
n+r−1, and y′′ =

∑∞
n=0(n+ r)(n+ r − 1)anx

n+r−2,

2xy′′ − (1 + x)y′ + y = 2x
∑∞

n=0(n+ r)(n+ r − 1)anx
n+r−2 − (1 + x)

∑∞
n=0(n+ r)anx

n+r−1 +
∑∞

n=0 anx
n+r

=
∑∞

n=0 2(n+ r)(n+ r − 1)anx
n+r−1 −∑∞n=0(n+ r)anx

n+r−1 −∑∞n=0(n+ r)anx
n+r +

∑∞
n=0 anx

n+r

=
∑∞

n=0[2(n+ r − 1)− 1](n+ r)anx
n+r−1 +

∑∞
n=0[−(n+ r) + 1]anx

n+r

=
∑∞

n=0[2n+ 2r − 3](n+ r)anx
n+r−1 +

∑∞
n=0[−(n+ r) + 1]anx

n+r

= [2r − 3](r)a0x
r−1 +

∑∞
n=1[2n+ 2r − 3](n+ r)anx

n+r−1 +
∑∞

n=0[−(n+ r) + 1]anx
n+r

= (2r − 3)(r)a0x
r−1 +

∑∞
n=0[2(n+ 1) + 2r − 3](n+ r + 1)an+1x

n+r +
∑∞

n=0[−(n+ r) + 1]anx
n+r

= (2r − 3)(r)a0x
r−1 +

∑∞
n=0(2n+ 2r − 1)(n+ r + 1)an+1x

n+r +
∑∞

n=0(1− n− r)anxn+r

= (2r − 3)(r)a0x
r−1 +

∑∞
n=0[(2n+ 2r − 1)(n+ r + 1)an+1 + (1− n− r)an]xn+r = 0

Thus the coefficient of xk is zero for all k.

Thus r(2r − 3)a0 = 0. Since a0 6= 0. The indicial question r(2r − 3) = 0 implies r = 0, 3
2

Also, (2n+ 2r − 1)(n+ r + 1)an+1 + (1− n− r)an = 0. Thus an+1 = (n+r−1)an
(2n+2r−1)(n+r+1)

indicial equation: r(2r − 3) = 0 roots of the indicial equation: r = 0, 3
2

recurrence relation: an+1 = (n+r−1)an
(2n+2r−1)(n+r+1)



[5] 4i.) Show that x =
[(

1
0

)
t+

(
0
1
2

)]
et is a solution to the differential equation x′ =

(
1 2
0 1

)
x

x′ =
(

1
0

)
et +

[(
1
0

)
t+

(
0
1
2

)]
et =

[(
1
0

)
t+

(
1
1
2

)]
et

Ax =
(

1 2
0 1

) [(
1
0

)
t+

(
0
1
2

)]
et =

[(
1 2
0 1

)(
1
0

)
t+

(
1 2
0 1

)(
0
1
2

)]
et =

[(
1
0

)
t+

(
1
1
2

)]
et

Thus x′ =
(

1 2
0 1

)
x for x =

[(
1
0

)
t+

(
0
1
2

)]
et

Of course in the above, you could have equivalently used x =
(
t
1
2

)
et =

(
tet
1
2
et

)

[5] 4ii) Find a second solution to x′ =
(

1 2
0 1

)
x

|A− λI| =
∣∣∣∣ 1− λ 2

0 1− λ

∣∣∣∣ = (1− λ)2 = 0. Thus λ = 1 is an eigenvalue with algebraic multiplicity 2.

Or note that λ = 1 is an eigenvalue with algebraic multiplicity 2 since the diagonal entries of a triangular
matrix are eigenvalues of that matrix.

A− (1)I =
(

0 2
0 0

)
and

(
0 2
0 0

)(
1
0

)
=
(

0
0

)

Thus a 2nd solution is x =
(

1
0

)
et

[5] 4iii) State the general solution to x′ =
(

1 2
0 1

)
x

x(t) = c1

(
1
0

)
et + c2

[(
1
0

)
t+

(
0
1
2

)]
et

[5] 4iv) Solve the initial value problem x′ =
(

1 2
0 1

)
x, x(0) =

(
3
4

)

c1

(
1
0

)
+ c2

(
0
1
2

)
=
(

3
4

)
implies c1 = 3 and c2 = 8.

Thus the solution to the IVP is x(t) = 3
(

1
0

)
et + 8

[(
1
0

)
t+

(
0
1
2

)]
et

or equivalently, x(t) =
(

3
4

)
et +

(
8
0

)
tet



p

q

A

B
C

D

E

FG

Fig. 1. Phase portrait Fig 2. Stability diagram

The phase portrait implies the
corresponding differential equa-
tion x′ = Ax has two real
(non-repeated) positive eigenval-
ues. Since the eigenvalues are
p±
√

p2−4q
2

, p, q are both positive
and thus the point (p, q) = E in
the stability diagram.

Note the trajectory corresponding to x2 = 0 = (0
1
)x1. Thus

(
x1
x2

)
=
(

1
0

)
is an eigenvector of A.

Note the trajectory corresponding to x2 = x1 = (1
1
)x1. Thus

(
x1
x2

)
=
(

1
1

)
is an eigenvector of A.

5.) The phase portrait for a differential equation (not given) is shown above in Fig 1. Answer the following
questions about this differential equation and its solution.

[9] i.) Find all equilibrium solutions and determine whether the critical point is asymptotically stable,
stable, or unstable. Also classify it as to type (nodal source, nodal sink, saddle point, spiral source, spiral
sink, center).

Equilibrium solution:
(
x1
x2

)
=
(

0
0

)
Stability : unstable Type: Nodal source

[6] ii.) Which of the differential equations below matches the phase portrait shown above?

Removing all DE’s where the matrix clearly does not have 2 different positive eigenvalues (note for the
triangular matrices, the eigenvalues are the diagonal entries):

a.) x′ =
(

1 2
0 3

)
x e.) x′ =

(
1 0
2 3

)
x

Note the matrices below do not have real eigenvalues, but that may or may not be obvious depending on
whether or not you remember the special case we discussed in class.

i.) x′ =
(

0 2
−2 0

)
x j.) x′ =

(
1 2
−2 1

)
x k.) x′ =

(−1 2
−2 −1

)
x

To determine which of the above is the correct solution, you can do one of the following:

Method 1.) You know that
(

1
0

)
is an e.vector. Calculate A

(
1
0

)
to see that the answer must be (a).

Method 2.) Determine eigenvalues of the above 5 matrices to rule out i, j, k (and use this information
to answer problem 6). To distinguish (a) from (c), you need to look at the eigenvectors. You can either
calculate these directly, but method 1 is faster.

Note you can determine the eigenvalues using det(A - rI) or by using that p = trace of the matrix and q
= determinant of the matrix,

[4] iii.) The (p, q) value corresponding to this differential equation is plotted in the Fig 2 graph above.
Circle the letter corresponding to the (p, q) value corresponding to the differential equation, x′ = Ax whose

phase portrait is drawn above. Recall that the eigenvalues of A are
p±
√

p2−4q
2

E
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Fig. 1. Phase portrait Fig 2. Stability diagram

The above phase portrait implies the corresponding differential equation x′ = Ax has two complex eigen-
values, a± bi where a < 0.

Since the eigenvalues are
p±
√

p2−4q
2

, p < 0 and p2− 4q < 0 Thus q > p
4

and p < 0 implies the point (p, q) =
B in the stability diagram.

6.) The phase portrait for a differential equation (not given) is shown above in Fig 1. Answer the following
questions about this differential equation and its solution.

[9] i.) Find all equilibrium solutions and determine whether the critical point is asymptotically stable,
stable, or unstable. Also classify it as to type (nodal source, nodal sink, saddle point, spiral source, spiral
sink, center).

Equilibrium solution:
(
x1
x2

)
=
(

0
0

)

Stability : asymptotically stable Type: spiral sink

[6] ii.) Which of the differential equations below matches the phase portrait shown above?

Removing all the matrices with real eigenvalues:

e.) x′ =
(

0 2
−2 0

)
x f.) x′ =

(
1 2
−2 1

)
x g.) x′ =

(−1 2
−2 −1

)
x

Calculate the eigenvalues of the above matrices to determine that the answer is (g).

[4] iii.) The (p, q) value corresponding to this differential equation is plotted in the Fig 2 graph above.
Circle the letter corresponding to the (p, q) value corresponding to the differential equation, x′ = Ax whose

phase portrait is drawn above. Recall that the eigenvalues of A are
p±
√

p2−4q
2

B


