Quiz 2 Feb 19, 2016 Show your work Circle your answer.

[10] 1.) Given that $y(x) = x^{\frac{3}{2}}$ and $y(x) = \frac{1}{x}$ are solutions to $2x^2y'' + xy' - 3y = 0$, state the general solution to this 2nd order homogeneous linear differential equation:

Given two linearly independent solutions to a 2nd order homogeneous linear differential equation, one can create the general solution by taking their linear combination. Thus the answer is

$$y(x) = c_1 x^{\frac{3}{2}} + \frac{c_2}{x}$$

In other words, $\{x^{\frac{3}{2}}, \frac{1}{x}\}$ forms a basis for the solution set (since every solution can be written uniquely as a linear combination of these two functions).

[10] 2.) Solve: $y' = y \sin(x) + y$. Separate variables: $\frac{dy}{dx} = y(\sin x + 1)$. $\frac{dy}{y} = (\sin x + 1)dx$ $\int \frac{dy}{y} = \int (\sin x + 1)dx$ $\ln|y| = -\cos(x) + x + C$ $\ln|y| = -\cos(x) + x + C$ $|y| = e^{-\cos(x) + x + C} = e^{C}e^{x - \cos(x)}$ Thus $y = Ce^{x - \cos(x)}$ Answer: $y = Ce^{x - \cos(x)}$