[10] 1.) Given that $y(x)=x^{\frac{3}{2}}$ and $y(x)=\frac{1}{x}$ are solutions to $2 x^{2} y^{\prime \prime}+x y^{\prime}-3 y=0$, state the general solution to this 2 nd order homogeneous linear differential equation:

Given two linearly independent solutions to a 2nd order homogeneous linear differential equation, one can create the general solution by taking their linear combination. Thus the answer is

$$
y(x)=c_{1} x^{\frac{3}{2}}+\frac{c_{2}}{x}
$$

In other words, $\left\{x^{\frac{3}{2}}, \frac{1}{x}\right\}$ forms a basis for the solution set (since every solution can be written uniquely as a linear combination of these two functions).
[10] 2.) Solve: $y^{\prime}=y \sin (x)+y$.
Separate variables: $\frac{d y}{d x}=y(\sin x+1)$.
$\frac{d y}{y}=(\sin x+1) d x$
$\int \frac{d y}{y}=\int(\sin x+1) d x$
$\ln |y|=-\cos (x)+x+C$
$\ln |y|=-\cos (x)+x+C$
$|y|=e^{-\cos (x)+x+C}=e^{C} e^{x-\cos (x)}$
Thus $y=C e^{x-\cos (x)}$
Answer: $y=C e^{x-\cos (x)}$

