
Calulus pre-requisites you must know.

Derivative = slope of tangent line = rate.

Integral = area between curve and x-axis (where
area can be negative).

The Fundamental Theorem of Calculus: Suppose f
continuous on [a, b].

1.) If G(x) =
∫ x

a
f(t)dt, then G′(x) = f(x).

I.e., d
dx [

∫ x

a
f(t)dt] = f(x).

2.)
∫ b

a
f(t)dt = F (b) − F (a) where F is any antid-

erivative of f , that is F ′ = f .

Integration Pre-requisites:

* Integration by substitution

* Integration by parts

* Integration by partial fractions

Note: Partial fractions are also used in ch 6 for a
different application.
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Suppose f is cont. on (a, b) and the point t0 ∈ (a, b),

Solve IVP: dy
dt = f(t), y(t0) = y0

dy = f(t)dt

∫
dy =

∫
f(t)dt

y = F (t) + C where F is any anti-derivative of F .

Initial Value Problem (IVP): y(t0) = y0

y0 = F (t0) + C implies C = y0 − F (t0)

Hence unique solution (if domain connected) to IVP:

y = F (t) + y0 − F (t0)
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1.1: Examples of differentiable equation:

1.) F = ma = mdv
dt = mg − γv

2.) Mouse population increases at a rate proportional
to the current population:

More general model : dp
dt = rp− k

where p(t) = mouse population at time t,
r = growth rate or rate constant,
k = predation rate = # mice killed per unit time.
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3.) Continuous compounding dS
dt = rS + k

where S(t) = amount of money at time t,
r = interest rate,
k = constant deposit rate

direction field = slope field = graph of dy
dt in t, y-

plane.

*** can use slope field to determine behavior of y
including as t → ±∞.

*** Equilibrium Solution = constant solution

Most differential equations do not have an equilibr-
ium solution.

Initial value: A chosen point (t0, y0)
through which a solution must pass.
I.e., (t0, y0) lies on the graph of
the solution that satisfies this
initial value.

(0.7536765,0.73333335)

(2.8676472,3.2044444)

(0.5147059,3.7555556)(0.18382353,3.8444445)

-2.5

0.0

2.5

-2.5 0.0 2.5

Initial value problem (IVP): A differential equation
where initial value is specified.
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An initial value problem can have 0, 1, or multiple
equilibrium solutions.

************Existence of a solution*************

************Uniqueness of solution*************

1.3:

ODE (ordinary differential equation): single independ-
ent variable

Ex: dy
dt = ay + b

PDE (partial differential equation): several independ-
ent variables

Ex: ∂xy
∂x = ∂xy

∂y

order of differential eq’n: order of highest derivative

example of order n: y(n) = f(t, y, ..., y(n−1))

Linear vs Non-linear

Linear: a0y
(n) + ...+ an−1y

′ + any = g(t)

where ai’s are functions of t
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Note for this linear equation, the left hand side is a
linear combination of the derivatives of y (denoted
by y(k), k = 0, ..., n) where the coefficient of y(k) is a
function of t (denoted ak(t)).

Linear: a0(t)y
(n) + ...+ an−1(t)y

′ + an(t)y = g(t)

Determine if linear or non-linear:

Ex: ty′′ − t3y′ − 3y = sin(t)

Ex: 2y′′ − 3y′ − 3y2 = 0

Show that for some value of r, y = ert is a soln to the
1rst order linear homogeneous equation 2y′−6y = 0.

To show something is a solution, plug it in:

y = ert implies y′ = rert. Plug into 2y′ − 6y = 0:

2rert + 6ert = 0 implies 2r − 6 = 0 implies r = 3

Thus y = e3t is a solution to 2y′ − 6y = 0.

Show y = Ce3t is a solution to 2y′ − 6y = 0.

2y′ − 6y = 2(Ce3t)′ − 6(Ce3t) = 2C(e3t)′ − 6C(e3t)
= C[2(e3t)′ − 6(e3t)] = C(0) = 0.
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If y(0) = 4, then 4 = Ce3(0) implies C = 4.

Thus by existence and uniqueness thm, y = 4e3t is
the unique solution to IVP: 2y′ + 6y = 0, y(0) = 4.

CH 2: Solve dy
dt = f(t, y) for special cases:

2.2: Separation of variables: N(y)dy = P (t)dt

2.1: First order linear eqn: dy
dt + p(t)y = g(t)

Ex 1: t2y′ + 2ty = tsin(t)

Ex 2: y′ = ay + b

Ex 3: y′ + 3t2y = t2, y(0) = 0

Note: can use either section 2.1 method (integrating
factor) or 2.2 method (separation of variables) to
solve ex 2 and 3.

Ex 1: t2y′ + 2ty = sin(t)
(note, cannot use separation of variables).

t2y′ + 2ty = sin(t)

(t2y)′ = sin(t) implies
∫
(t2y)′dt =

∫
sin(t)dt

(t2y) = −cos(t) + C implies y = −t−2cos(t) + Ct−2
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Ex. 2: Solve dy
dt = ay + b by separating variables:

dy
ay+b = dt ⇒

∫
dy

ay+b =
∫
dt ⇒ ln|ay+b|

a = t+C

ln|ay + b| = at+C implies eln|ay+b| = eat+C

|ay + b| = eCeat implies ay + b = ±(eCeat)

ay = Ceat − b implies y = Ceat − b
a

Gen ex: Solve y′ + p(x)y = g(x)

Let F (x) be an anti-derivative of p(x). Thus p(x) = F ′(x)

eF (x)y′ + [p(x)eF (x)]y = g(x)eF (x)

eF (x)y′ + [F ′(x)eF (x)]y = g(x)eF (x)

[eF (x)y]′ = g(x)eF (x)

eF (x)y =
∫
g(x)eF (x)dx

y = e−F (x)
∫
g(x)eF (x)dx
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2.3: Modeling with differential equations.

Suppose salty water enters and leaves a tank at a
rate of 2 liters/minute.

Suppose also that the salt concentration of the water
entering the tank varies with respect to time accor-
ding to Q(t) · tsin(t2) g/liters where Q(t) = amount
of salt in tank in grams. (Note: this is not realistic).

If the tank contains 4 liters of water and initially
contains 5g of salt, find a formula for the amount of
salt in the tank after t minutes.

Let Q(t) = amount of salt in tank in grams.

Note Q(0) = 5 g

rate in = (2 liters/min)(Q(t) · tsin(t2) g/liters)
= 2Qtsin(t2) g/min

rate out = (2 liters/min)( Q(t)g

4liters
) = Q

2 g/min

dQ
dt = rate in - rate out = 2Qtsin(t2)− Q

2

dQ
dt = Q(2tsin(t2)− 1

2 ), Q(0) = 5
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This is a first order linear ODE. It is also a separable
ODE. Thus can use either 2.1 or 2.2 methods.

Using the easier 2.2:∫
dQ
Q =

∫
(2tsin(t2)− 1

2 )dt =
∫
2tsin(t2)dt−

∫
1
2dt

Let u = t2, du = 2tdt

ln|Q| =
∫
sin(u)du− t

2 = −cos(u)− t
2 + C

= −cos(t2)− t
2 + C

|Q| = e−cos(t2)− t
2+C = eCe−cos(t2)− t

2

Q = Ce−cos(t2)− t
2

Q(0) = 5 : 5 = Ce−1−0 = Ce−1. Thus C = 5e

Thus Q(t) = 5e · e−cos(t2)− t
2

Thus Q(t) = 5e−cos(t2)− t
2+1

Long-term behaviour:

Q(t) = 5(e−cos(t2))(e
−t
2 )e

As t → ∞, e
−t
2 → 0, while 5(e−cos(t2))e are finite.

Thus as t → ∞, Q(t) → 0.
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Section 2.4 y’ = y1/3 

 

 

Figure 2.4.1 from Elementary Differential Equations and Boundary Value 

Problems, Eighth Edition by William E. Boyce and Richard C. DiPrima 

Note IVP, y′ = y
1
3 , y(x0) = 0 has an infinite number

of solutions,

while IVP, y′ = y
1
3 , y(x0) = y0 where y0 ̸= 0 has a

unique solution.

Initial Value Problem: y(t0) = y0
Use initial value to solve for C.
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Section 2.4: Existence and Uniqueness.

In general, for y′ = f(t, y), y(t0) = y0,
solution may or may not exist and solution
may or may not be unique.

Example Non-unique: y′ = y
1
3

y = 0 is a solution to y′ = y
1
3 since y′ = 0 = 0

1
3 = y

1
3

Suppose y ̸= 0. Then dy
dx = y

1
3 implies y−

1
3 dy = dx∫

y−
1
3 dy =

∫
dx implies 3

2y
2
3 = x+ C

y
2
3 = 2

3x+ C implies y = ±
√

( 23x+ C)3

Suppose y(3) = 0. Then 0 =
√
(2 + C)3 ⇒ C = −2.

The IVP, y′ = y
1
3 , y(3) = 0, has an infinite # of sol’ns

including: y = 0, y =
√

( 23x− 2)3, y = −
√
( 23x− 2)3
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Examples: No solution:

Ex 1: y′ = y′ + 1

Ex 2: (y′)2 = −1

Ex 3 (IVP): dy
dx = y(1 + 1

x ), y(0) = 1∫
dy
y =

∫
(1+ 1

x )dx implies ln|y| = x+ ln|x|+C

|y| = ex+ln|x|+C = exeln|x|eC = C|x|ex = Cxex

y = ±Cxex implies y = Cxex

y(0) = 1: 1 = C(0)e0 = 0 implies

IVP dy
dx = y(1 + 1

x ), y(0) = 1 has no solution.

http://www.wolframalpha.com

slope field: {1, y(1+1/x)}/sqrt(1+y∧2(1+1/x)∧2)
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Special cases:

Suppose f is cont. on (a, b) and the point t0 ∈ (a, b),
Solve IVP: dy

dt = f(t), y(t0) = y0

dy = f(t)dt∫
dy =

∫
f(t)dt

y = F (t) + C where F is any anti-derivative of F .

Initial Value Problem (IVP): y(t0) = y0

y0 = F (t0) + C implies C = y0 − F (t0)

Hence unique solution (if domain connected) to IVP:
y = F (t) + y0 − F (t0)

First order linear differential equation:

Thm 2.4.1: If p and g are continuous on (a, b) and
the point t0 ∈ (a, b), then there exists a unique fun-
ction y = ϕ(t) defined on (a, b) that satisfies the
following initial value problem:

y′ + p(t)y = g(t), y(t0) = y0.
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More general case (but still need hypothesis)

Thm 2.4.2: Suppose the functions
z = f(t, y) and z = ∂f

∂y (t, y) are continuous on

(a, b)× (c, d) and the point (t0, y0) ∈ (a, b)× (c, d),

then there exists an interval (t0 − h, t0 + h) ⊂ (a, b)
such that there exists a unique function y = ϕ(t)
defined on (t0−h, t0+h) that satisfies the following
initial value problem:

y′ = f(t, y), y(t0) = y0.

If possible without solving, determine where the
solution exists for the following initial value prob-
lems:

If not possible without solving, state where in the
ty-plane, the hypothesis of theorem 2.4.2 is satisfied.
In other words, use theorm 2.4.2 to determine where
for some interval about t0, a solution to IVP, y′ =
f(t, y), y(t0) = y0 exists and is unique.

Example 1: ty′ − y = 1, y(t0) = y0
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Example 2: y′ = ln| ty , y(3) = 6

Example 3: (t2 − 1)y′ − t3y
t−4 = ln|t|, y(3) = 6

Section 2.4 example: dy
dt = 1

(1−t)(2−y)

F (y, t) = 1
(1−t)(2−y) is continuous for all t ̸= 1, y ̸= 2

∂F
∂y =

∂
(

1
(1−t)(2−y)

)
∂y = 1

(1−t)
∂(2−y)−1

∂y = 1
(1−t)(2−y)2

∂F
∂y is continuous for all t ̸= 1, y ̸= 2

Thus the IVP dy
dt = 1

(1−t)(2−y) , y(t0) = y0 has a

unique solution if t0 ̸= 1, y0 ̸= 2.

Note that if y0 = 2, dy
dt = 1

(1−t)(2−y) , y(t0) = 2 has

two solutions if t0 ̸= 1 (and if we allow vertical slope
in domain. Note normally our convention will be to
NOT allow vertical slope in domain of solution).

Note that if t0 = 1, dy
dt = 1

(1−t)(2−y) , y(1) = y0 has

no solutions.
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(1, 1/((1− t)(2− y)))/sqrt(1 + 1/((1− t)(2− y))2)

Solve via separation of variables: dy
dt = 1

(1−t)(2−y)∫
(2− y)dy =

∫
dt
1−t

2y − y2

2 = −ln|1− t|+ C

y2 − 4y − 2ln|1− t|+ C = 0

y =
4±

√
16+4(2ln|1−t|+C)

2 = 2±
√

4 + 2ln|1− t|+ C

y = 2±
√
2ln|1− t|+ C

Find domain:
2ln|1− t|+ C ≥ 0 and t ̸= 1 and y ̸= 2
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NOTE: the convention in this class to to choose
largest possible connected domain where tang-
ent line to solution is never vertical.

2ln|1− t| ≥ −C and t ̸= 1 and y ̸= 2 implies

ln|1− t| > −C
2 Note: we want to find domain

for this C and thus this C can’t swallow constants).

|1− t| > e−
C
2 since ex is an increasing function.

1− t < −e−
C
2 or 1− t > e−

C
2

−t < −e−
C
2 − 1 or −t > e−

C
2 − 1

Domain:

{
t > e−

C
2 + 1 if t0 > 1

t < −e−
C
2 + 1 if t0 < 1.

Note: Domain is much easier to determine when the
ODE is linear.

Find C given y(t0) = y0: y0 = 2±
√
2ln|1− t0|+ C

±(y0 − 2) =
√

2ln|1− t0|+ C
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(y0 − 2)2 − 2ln|1− t0| = C

y = 2±
√
2ln|1− t|+ C

y = 2±
√

2ln|1− t|+ (y0 − 2)2 − 2ln|1− t0|

y = 2±
√

(y0 − 2)2 + ln (1−t)2

(1−t0)2

Domain:

{
t > e−

C
2 + 1 if t0 > 1

t < −e−
C
2 + 1 if t0 < 1.

e−
C
2 = e−

(y0−2)2−2ln|1−t0|
2 = |1− t0|e−

(y0−2)2

2

Domain:

{
t > 1 + |1− t0|e−

(y0−2)2

2 if t0 > 1

t < 1− |1− t0|e−
(y0−2)2

2 if t0 < 1.

2.4 #27b. Solve Bernoulli’s equation,

y′ + p(t)y = g(t)yn,

when n ̸= 0, 1 by changing it

y−ny′ + p(t)y1−n = g(t)

when n ̸= 0, 1 by changing it to a linear equation by
substituting v = y1−n
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Example: Solve ty′ + 2t−2y = 2t−2y5
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Section 2.5: Autonomous equations: y′ = f(y)

Example: Exponential Growth/Decay
Example: population growth/radioactive decay

y′ = ry, y(0) = y0 implies y = y0e
rt

r > 0 r < 0

Example: Logistic growth: y′ = h(y)y

Example: y′ = r(1− y
K )y

y vs f(y) slope field:

Equilibrium solutions:

As t → ∞, if y > 0, y →

Solution: y = y0K
y0+(K−y0)e−rt
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Section 2.5 Autonomous equations: y′ = f(y)

If given either differential equation y′ = f(y)
OR direction field:

Find equilibrium solutions and determine if
stable, unstable, semi-stable.

Understand what the above means.

Asymptotically stable:

Asymptotically unstable:

Asymptotically semi-stable:
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