Calulus pre-requisites you must know.
Derivative $=$ slope of tangent line $=$ rate.
Integral $=$ area between curve and x -axis (where area can be negative).

The Fundamental Theorem of Calculus: Suppose f continuous on $[a, b]$.
1.) If $G(x)=\int_{a}^{x} f(t) d t$, then $G^{\prime}(x)=f(x)$.

$$
\text { I.e., } \frac{d}{d x}\left[\int_{a}^{x} f(t) d t\right]=f(x) \text {. }
$$

2.) $\int_{a}^{b} f(t) d t=F(b)-F(a)$ where F is any antiderivative of f, that is $F^{\prime}=f$.

Integration Pre-requisites:

* Integration by substitution
* Integration by parts
* Integration by partial fractions

Note: Partial fractions are also used in ch 6 for a different application.

Suppose f is cont. on (a, b) and the point $t_{0} \in(a, b)$, Solve IVP:

$$
\begin{aligned}
\frac{d y}{d t} & =f(t), \quad y\left(t_{0}\right)=y_{0} \\
d y & =f(t) d t \\
\int d y & =\int f(t) d t
\end{aligned}
$$

$y=F(t)+C$ where F is any anti-derivative of F.

Initial Value Problem (IVP): $y\left(t_{0}\right)=y_{0}$

$$
y_{0}=F\left(t_{0}\right)+C \text { implies } C=y_{0}-F\left(t_{0}\right)
$$

Hence unique solution (if domain connected) to IVP:

$$
y=F(t)+y_{0}-F\left(t_{0}\right)
$$

1.1: Examples of differentiable equation:

$$
\text { 1.) } F=m a=m \frac{d v}{d t}=m g-\gamma v
$$

2.) Mouse population increases at a rate proportional to the current population:

More general model : $\frac{d p}{d t}=r p-k$ where $p(t)=$ mouse population at time t, $r=$ growth rate or rate constant, $k=$ predation rate $=\#$ mice killed per unit time.

3.) Continuous compounding $\frac{d S}{d t}=r S+k$ where $S(t)=$ amount of money at time t, $r=$ interest rate,
$k=$ constant deposit rate
direction field $=$ slope field $=$ graph of $\frac{d y}{d t}$ in $t, y-$ plane.
*** can use slope field to determine behavior of y including as $t \rightarrow \pm \infty$.
*** Equilibrium Solution $=$ constant solution
Most differential equations do not have an equilibrfum solution.

Initial value: A chosen point $\left(t_{0}, y_{0}\right)$ through which a solution must pass.
I.e., $\left(t_{0}, y_{0}\right)$ lies on the graph of the solution that satisfies this initial value.

Initial value problem (IVP): A differential equation where initial value is specified.

An initial value problem can have 0 , 1 , or multiple equilibrium solutions.
$* * * * * * * * * * * *$ Existence of a solution $* * * * * * * * * * * * *$ $* * * * * * * * * * * *$ Uniqueness of solution ${ }^{* * * * * * * * * * * * * ~}$

1.3:

ODE (ordinary differential equation): single independent variable

Ex: $\frac{d y}{d t}=a y+b$
PDE (partial differential equation): several independent variables

Ex: $\frac{\partial x y}{\partial x}=\frac{\partial x y}{\partial y}$
order of differential eq'n: order of highest derivative example of order $n: y^{(n)}=f\left(t, y, \ldots, y^{(n-1)}\right)$

Linear vs Non-linear

Linear: $a_{0} y^{(n)}+\ldots+a_{n-1} y^{\prime}+a_{n} y=g(t)$
where a_{i} 's are functions of t

Note for this linear equation, the left hand side is a linear combination of the derivatives of y (denoted by $\left.y^{(k)}, k=0, \ldots, n\right)$ where the coefficient of $y^{(k)}$ is a function of t (denoted $a_{k}(t)$).

Linear: $a_{0}(t) y^{(n)}+\ldots+a_{n-1}(t) y^{\prime}+a_{n}(t) y=g(t)$
Determine if linear or non-linear:
Ex: $t y^{\prime \prime}-t^{3} y^{\prime}-3 y=\sin (t)$
Ex: $2 y^{\prime \prime}-3 y^{\prime}-3 y^{2}=0$

Show that for some value of $r, y=e^{r t}$ is a sol to the $1^{r s t}$ order linear homogeneous equation $2 y^{\prime}-6 y=0$.

To show something is a solution, plug it in:

$$
\begin{aligned}
& y=e^{r t} \text { implies } y^{\prime}=r e^{r t} . \text { Plug into } 2 y^{\prime}-6 y=0 \\
& 2 r e^{r t}+6 e^{r t}=0 \text { implies } 2 r-6=0 \text { implies } r=3
\end{aligned}
$$

Thus $y=e^{3 t}$ is a solution to $2 y^{\prime}-6 y=0$.
Show $y=C e^{3 t}$ is a solution to $2 y^{\prime}-6 y=0$.

$$
\begin{aligned}
& 2 y^{\prime}-6 y=2\left(C e^{3 t}\right)^{\prime}-6\left(C e^{3 t}\right)=2 C\left(e^{3 t}\right)^{\prime}-6 C\left(e^{3 t}\right) \\
&=C\left[2\left(e^{3 t}\right)^{\prime}-6\left(e^{3 t}\right)\right]=C(0)=0 .
\end{aligned}
$$

If $y(0)=4$, then $4=C e^{3(0)}$ implies $C=4$.
Thus by existence and uniqueness the, $y=4 e^{3 t}$ is the unique solution to IVP: $2 y^{\prime}+6 y=0, y(0)=4$.

CH 2: Solve $\frac{d y}{d t}=f(t, y)$ for special cases:
2.2: Separation of variables: $N(y) d y=P(t) d t$
2.1: First order linear eqn: $\frac{d y}{d t}+p(t) y=g(t)$

Ex 1: $t^{2} y^{\prime}+2 t y=t \sin (t)$
Ex 2: $y^{\prime}=a y+b$
Ex 3: $y^{\prime}+3 t^{2} y=t^{2}, y(0)=0$
Note: can use either section 2.1 method (integrating factor) or 2.2 method (separation of variables) to solve ex 2 and 3 .

Ex 1: $t^{2} y^{\prime}+2 t y=\sin (t)$
(note, cannot use separation of variables).
$t^{2} y^{\prime}+2 t y=\sin (t)$
$\left(t^{2} y\right)^{\prime}=\sin (t) \quad$ implies $\quad \int\left(t^{2} y\right)^{\prime} d t=\int \sin (t) d t$
$\left(t^{2} y\right)=-\cos (t)+C$ implies $y=-t^{-2} \cos (t)+C t^{-2}$

Ex. 2: Solve $\frac{d y}{d t}=a y+b$ by separating variables:
$\frac{d y}{a y+b}=d t \Rightarrow \int \frac{d y}{a y+b}=\int d t \Rightarrow \frac{\ln |a y+b|}{a}=t+C$
$\ln |a y+b|=a t+C \quad$ implies $\quad e^{l n|a y+b|}=e^{a t+C}$
$|a y+b|=e^{C} e^{a t} \quad$ implies $\quad a y+b= \pm\left(e^{C} e^{a t}\right)$
$a y=C e^{a t}-b \quad$ implies $\quad y=C e^{a t}-\frac{b}{a}$

Gen ex: Solve $y^{\prime}+p(x) y=g(x)$
Let $F(x)$ be an anti-derivative of $p(x)$. Thus $p(x)=F^{\prime}(x)$

$$
\begin{aligned}
& e^{F(x)} y^{\prime}+\left[p(x) e^{F(x)}\right] y=g(x) e^{F(x)} \\
& e^{F(x)} y^{\prime}+\left[F^{\prime}(x) e^{F(x)}\right] y=g(x) e^{F(x)} \\
& \quad\left[e^{F(x)} y\right]^{\prime}=g(x) e^{F(x)} \\
& e^{F(x)} y=\int g(x) e^{F(x)} d x \\
& y=e^{-F(x)} \int g(x) e^{F(x)} d x
\end{aligned}
$$

2.3: Modeling with differential equations.

Suppose salty water enters and leaves a tank at a rate of 2 liters/minute.

Suppose also that the salt concentration of the water entering the tank varies with respect to time according to $Q(t) \cdot \operatorname{tsin}\left(t^{2}\right) \mathrm{g} /$ liters where $Q(t)=$ amount of salt in tank in grams. (Note: this is not realistic). If the tank contains 4 liters of water and initially contains 5 g of salt, find a formula for the amount of salt in the tank after t minutes.

Let $Q(t)=$ amount of salt in tank in grams.
Note $Q(0)=5 \mathrm{~g}$
rate in $=(2$ liters $/ \min)\left(Q(t) \cdot t \sin \left(t^{2}\right) \mathrm{g} /\right.$ liters $)$

$$
=2 Q t \sin \left(t^{2}\right) \mathrm{g} / \mathrm{min}
$$

rate out $=(2$ liters $/ \mathrm{min})\left(\frac{Q(t) g}{4 \text { liters }}\right)=\frac{Q}{2} \mathrm{~g} / \mathrm{min}$
$\frac{d Q}{d t}=$ rate in - rate out $=2 Q \operatorname{tsin}\left(t^{2}\right)-\frac{Q}{2}$
$\frac{d Q}{d t}=Q\left(2 t \sin \left(t^{2}\right)-\frac{1}{2}\right), \quad Q(0)=5$

This is a first order linear ODE. It is also a separable ODE. Thus can use either 2.1 or 2.2 methods.

Using the easier 2.2:
$\int \frac{d Q}{Q}=\int\left(2 t \sin \left(t^{2}\right)-\frac{1}{2}\right) d t=\int 2 t \sin \left(t^{2}\right) d t-\int \frac{1}{2} d t$

$$
\text { Let } u=t^{2}, d u=2 t d t
$$

$\ln |Q|=\int \sin (u) d u-\frac{t}{2}=-\cos (u)-\frac{t}{2}+C$

$$
=-\cos \left(t^{2}\right)-\frac{t}{2}+C
$$

$|Q|=e^{-\cos \left(t^{2}\right)-\frac{t}{2}+C}=e^{C} e^{-\cos \left(t^{2}\right)-\frac{t}{2}}$

$$
Q=C e^{-\cos \left(t^{2}\right)-\frac{t}{2}}
$$

$Q(0)=5: \quad 5=C e^{-1-0}=C e^{-1}$. Thus $C=5 e$
Thus $Q(t)=5 e \cdot e^{-\cos \left(t^{2}\right)-\frac{t}{2}}$

$$
\text { Thus } Q(t)=5 e^{-\cos \left(t^{2}\right)-\frac{t}{2}+1}
$$

Long-term behaviour:

$$
Q(t)=5\left(e^{-\cos \left(t^{2}\right)}\right)\left(e^{\frac{-t}{2}}\right) e
$$

As $t \rightarrow \infty, e^{\frac{-t}{2}} \rightarrow 0$, while $5\left(e^{-\cos \left(t^{2}\right)}\right) e$ are finite.
Thus as $t \rightarrow \infty, Q(t) \rightarrow 0$.

Section $2.4 \quad y^{\prime}=y^{1 / 3}$

Figure 2.4.1 from Elementary Differential Equations and Boundary Value
Problems, Eighth Edition by William E. Boyce and Richard C. DiPrima

$$
\begin{array}{r}
\text { Note IVP, } y^{\prime}=y^{\frac{1}{3}}, y\left(x_{0}\right)=0 \text { has an infinite number } \\
\text { of solutions, }
\end{array}
$$

while IVP, $y^{\prime}=y^{\frac{1}{3}}, y\left(x_{0}\right)=y_{0}$ where $y_{0} \neq 0$ has a unique solution.

Initial Value Problem: $y\left(t_{0}\right)=y_{0}$ Use initial value to solve for C .

Section 2.4: Existence and Uniqueness.
In general, for $y^{\prime}=f(t, y), y\left(t_{0}\right)=y_{0}$,
solution may or may not exist and solution may or may not be unique.

Example Non-unique: $y^{\prime}=y^{\frac{1}{3}}$
$y=0$ is a solution to $y^{\prime}=y^{\frac{1}{3}}$ since $y^{\prime}=0=0^{\frac{1}{3}}=y^{\frac{1}{3}}$
Suppose $y \neq 0$. Then $\frac{d y}{d x}=y^{\frac{1}{3}}$ implies $y^{-\frac{1}{3}} d y=d x$
$\int y^{-\frac{1}{3}} d y=\int d x$ implies $\frac{3}{2} y^{\frac{2}{3}}=x+C$
$y^{\frac{2}{3}}=\frac{2}{3} x+C$ implies $y= \pm \sqrt{\left(\frac{2}{3} x+C\right)^{3}}$

Suppose $y(3)=0$. Then $0=\sqrt{(2+C)^{3}} \Rightarrow C=-2$.

The IVP, $y^{\prime}=y^{\frac{1}{3}}, y(3)=0$, has an infinite $\#$ of sol'ns including: $y=0, \quad y=\sqrt{\left(\frac{2}{3} x-2\right)^{3}}, \quad y=-\sqrt{\left(\frac{2}{3} x-2\right)^{3}}$

Examples: No solution:

Ex 1: $y^{\prime}=y^{\prime}+1$
Ex 2: $\left(y^{\prime}\right)^{2}=-1$
Ex 3 (IVP): $\frac{d y}{d x}=y\left(1+\frac{1}{x}\right), y(0)=1$
$\int \frac{d y}{y}=\int\left(1+\frac{1}{x}\right) d x \quad$ implies $\quad \ln |y|=x+\ln |x|+C$
$|y|=e^{x+\ln |x|+C}=e^{x} e^{\ln |x|} e^{C}=C|x| e^{x}=C x e^{x}$
$y= \pm C x e^{x}$ implies $y=C x e^{x}$
$y(0)=1: \quad 1=C(0) e^{0}=0$ implies
IVP $\frac{d y}{d x}=y\left(1+\frac{1}{x}\right), y(0)=1$ has no solution.
http://www.wolframalpha.com
slope field: $\{1, y(1+1 / x)\} / \operatorname{sqrt}(1+y \wedge 2(1+1 / x) \wedge 2)$

Special cases:
Suppose f is cont. on (a, b) and the point $t_{0} \in(a, b)$, Solve IVP: $\frac{d y}{d t}=f(t), y\left(t_{0}\right)=y_{0}$

$$
\begin{aligned}
d y & =f(t) d t \\
\int d y & =\int f(t) d t
\end{aligned}
$$

$y=F(t)+C$ where F is any anti-derivative of F.
Initial Value Problem (IVP): $y\left(t_{0}\right)=y_{0}$

$$
y_{0}=F\left(t_{0}\right)+C \text { implies } C=y_{0}-F\left(t_{0}\right)
$$

Hence unique solution (if domain connected) to IVP:

$$
y=F(t)+y_{0}-F\left(t_{0}\right)
$$

First order linear differential equation:

Thm 2.4.1: If p and g are continuous on (a, b) and the point $t_{0} \in(a, b)$, then there exists a unique funaction $y=\phi(t)$ defined on (a, b) that satisfies the following initial value problem:

$$
y^{\prime}+p(t) y=g(t), \quad y\left(t_{0}\right)=y_{0}
$$

More general case (but still need hypothesis)
Chm 2.4.2: Suppose the functions
$z=f(t, y)$ and $z=\frac{\partial f}{\partial y}(t, y)$ are continuous on $(a, b) \times(c, d)$ and the point $\left(t_{0}, y_{0}\right) \in(a, b) \times(c, d)$,
then there exists an interval $\left(t_{0}-h, t_{0}+h\right) \subset(a, b)$ such that there exists a unique function $y=\phi(t)$ defined on $\left(t_{0}-h, t_{0}+h\right)$ that satisfies the following initial value problem:

$$
y^{\prime}=f(t, y), \quad y\left(t_{0}\right)=y_{0} .
$$

If possible without solving, determine where the solution exists for the following initial value problems:

If not possible without solving, state where in the $t y$-plane, the hypothesis of theorem 2.4.2 is satisfied. In other words, use theorm 2.4.2 to determine where for some interval about t_{0}, a solution to IVP, $y^{\prime}=$ $f(t, y), y\left(t_{0}\right)=y_{0}$ exists and is unique.

Example 1: $t y^{\prime}-y=1, y\left(t_{0}\right)=y_{0}$

Example 2: $y^{\prime}=\ln \left\lvert\, \frac{t}{y}\right., y(3)=6$

Example 3: $\left(t^{2}-1\right) y^{\prime}-\frac{t^{3} y}{t-4}=\ln |t|, y(3)=6$

Section 2.4 example: $\frac{d y}{d t}=\frac{1}{(1-t)(2-y)}$
$F(y, t)=\frac{1}{(1-t)(2-y)}$ is continuous for all $t \neq 1, y \neq 2$
$\frac{\partial F}{\partial y}=\frac{\partial\left(\frac{1}{(1-t)(2-y)}\right)}{\partial y}=\frac{1}{(1-t)} \frac{\partial(2-y)^{-1}}{\partial y}=\frac{1}{(1-t)(2-y)^{2}}$
$\frac{\partial F}{\partial y}$ is continuous for all $t \neq 1, y \neq 2$
Thus the IVP $\frac{d y}{d t}=\frac{1}{(1-t)(2-y)}, y\left(t_{0}\right)=y_{0}$ has a unique solution if $t_{0} \neq 1, y_{0} \neq 2$.

Note that if $y_{0}=2, \frac{d y}{d t}=\frac{1}{(1-t)(2-y)}, y\left(t_{0}\right)=2$ has two solutions if $t_{0} \neq 1$ (and if we allow vertical slope in domain. Note normally our convention will be to NOT allow vertical slope in domain of solution).

Note that if $t_{0}=1, \frac{d y}{d t}=\frac{1}{(1-t)(2-y)}, y(1)=y_{0}$ has no solutions.

$(1,1 /((1-t)(2-y))) / \operatorname{sqrt}\left(1+1 /((1-t)(2-y))^{2}\right)$
Solve via separation of variables: $\frac{d y}{d t}=\frac{1}{(1-t)(2-y)}$

$$
\int(2-y) d y=\int \frac{d t}{1-t}
$$

$2 y-\frac{y^{2}}{2}=-\ln |1-t|+C$
$y^{2}-4 y-2 \ln |1-t|+C=0$

$$
\begin{gathered}
y=\frac{4 \pm \sqrt{16+4(2 \ln |1-t|+C)}}{2}=2 \pm \sqrt{4+2 \ln |1-t|+C} \\
y=2 \pm \sqrt{2 \ln |1-t|+C}
\end{gathered}
$$

Find domain:
$2 \ln |1-t|+C \geq 0$ and $t \neq 1$ and $y \neq 2$

NOTE: the convention in this class to to choose ■ largest possible connected domain where tangant line to solution is never vertical.
$2 \ln |1-t| \geq-C$ and $t \neq 1$ and $y \neq 2$ implies
$\ln |1-t|>-\frac{C}{2} \quad$ Note: we want to find domain for this C and thus this C can't swallow constants).
$|1-t|>e^{-\frac{C}{2}}$ since e^{x} is an increasing function.
$1-t<-e^{-\frac{C}{2}}$ or $1-t>e^{-\frac{C}{2}}$
$-t<-e^{-\frac{C}{2}}-1$ or $-t>e^{-\frac{C}{2}}-1$
Domain: $\begin{cases}t>e^{-\frac{C}{2}}+1 & \text { if } t_{0}>1 \\ t<-e^{-\frac{C}{2}}+1 & \text { if } t_{0}<1 .\end{cases}$
Note: Domain is much easier to determine when the ODE is linear.

Find C given $y\left(t_{0}\right)=y_{0}: y_{0}=2 \pm \sqrt{2 \ln \left|1-t_{0}\right|+C}$

$$
\pm\left(y_{0}-2\right)=\sqrt{2 \ln \left|1-t_{0}\right|+C}
$$

$$
\left(y_{0}-2\right)^{2}-2 \ln \left|1-t_{0}\right|=C
$$

$y=2 \pm \sqrt{2 \ln |1-t|+C}$
$y=2 \pm \sqrt{2 \ln |1-t|+\left(y_{0}-2\right)^{2}-2 \ln \left|1-t_{0}\right|}$
$y=2 \pm \sqrt{\left(y_{0}-2\right)^{2}+\ln \frac{(1-t)^{2}}{\left(1-t_{0}\right)^{2}}}$
Domain: $\begin{cases}t>e^{-\frac{C}{2}}+1 & \text { if } t_{0}>1 \\ t<-e^{-\frac{C}{2}}+1 & \text { if } t_{0}<1 .\end{cases}$
$e^{-\frac{C}{2}}=e^{-\frac{\left(y_{0}-2\right)^{2}-2 l n\left|1-t_{0}\right|}{2}}=\left|1-t_{0}\right| e^{-\frac{\left(y_{0}-2\right)^{2}}{2}}$
Domain: $\begin{cases}t>1+\left|1-t_{0}\right| e^{-\frac{\left(y_{0}-2\right)^{2}}{2}} & \text { if } t_{0}>1 \\ t<1-\left|1-t_{0}\right| e^{-\frac{\left(y_{0}-2\right)^{2}}{2}} & \text { if } t_{0}<1 .\end{cases}$
2.4 \#27b. Solve Bernoulli's equation,

$$
y^{\prime}+p(t) y=g(t) y^{n}
$$

when $n \neq 0,1$ by changing it

$$
y^{-n} y^{\prime}+p(t) y^{1-n}=g(t)
$$

when $n \neq 0,1$ by changing it to a linear equation by substituting $v=y^{1-n}$

Example: Solve $t y^{\prime}+2 t^{-2} y=2 t^{-2} y^{5}$

Section 2.5: Autonomous equations: $y^{\prime}=f(y)$
Example: Exponential Growth/Decay
Example: population growth/radioactive decay

$$
y^{\prime}=r y, y(0)=y_{0} \text { implies } y=y_{0} e^{r t}
$$

$r>0$

$$
r<0
$$

Example: Logistic growth: $y^{\prime}=h(y) y$

$$
\text { Example: } y^{\prime}=r\left(1-\frac{y}{K}\right) y
$$

$y \operatorname{vs} f(y)$
slope field:

Equilibrium solutions:
As $t \rightarrow \infty$, if $y>0, y \rightarrow$
Solution: $y=\frac{y_{0} K}{y_{0}+\left(K-y_{0}\right) e^{-r t}}$

Section 2.5 Autonomous equations: $y^{\prime}=f(y)$
If given either differential equation $y^{\prime}=f(y)$
OR direction field:
Find equilibrium solutions and determine if stable, unstable, semi-stable.

Understand what the above means.
Asymptotically stable:

Asymptotically unstable:

Asymptotically semi-stable:

