Calulus pre-requisites you must know.
Derivative = slope of tangent line = rate.

Integral = area between curve and x-axis (where
area can be negative).

The Fundamental Theorem of Calculus: Suppose f
continuous on |a, b].

) If G(z) = [ f(t)dt, then G'(z) = f(x).
Le., L[ [" f(t)dt] = f(x).

2.) ff f(t)dt = F(b) — F(a) where F' is any antid-
erivative of f, that is F' = f.

Integration Pre-requisites:

* Integration by substitution

* Integration by parts

* Integration by partial fractions

Note: Partial fractions are also used in ch 6 for a
different application.




Suppose f is cont. on (a,b) and the point ty € (a,b),

Solve IVP: fl—?z = f(1), y(to) = Yo

Jdy= | f(t)dt

y = F(t) + C where F' is any anti-derivative of F'.

Initial Value Problem (IVP): y(t9) = yo
Yo = F'(tg) + C implies C' = yo — F'(to)
Hence unique solution (if domain connected) to IVP:

y = F(t) +yo — F(to)
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1.1: Examples of differentiable equation:

1.) F =ma

=) 0
i

SOf = = -

451
El

2.) Mouse population increases at a rate proportionall

to the current population:
k = predation rate = # mice Kkilled per unit time.

r = growth rate or rate constant,

More general model :

where p(t)

=) 0
i

451
El
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3.) Continuous compounding % =rS+k
where S(t) = amount of money at time ¢,
r = Interest rate,

k = constant deposit rate

direction field = slope field = graph of % in t,y-
plane.

% can use slope field to determine behavior of y

including as t — +o00.
*** Equilibrium Solution = constant solution

Most differential equations do not have an equilibr-
ium solution.

Initial value: A chosen point (tg, yo)
through which a solution must pass.
Le., (to,yo) lies on the graph of

the solution that satisfies this
initial value.
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Initial value problem (IVP): A differential equation
where initial value is specified.



An initial value problem can have 0, 1, or multiple
equilibrium solutions.

************Existence of a Solution*************

************Uniqueness of Solution*************

1.3:

ODE (ordinary differential equation): single independ-}j
ent variable

Ex: dy —ay+b

PDE (partial differential equation): several independ-}j
ent variables

order of differential eq’n: order of highest derivative

example of order n: y™ = f(t,y,...,y*~ 1)

Linear vs Non-linear
Linear: aoy™ + ... + an_1y" + any = g(t)

where a;’s are functions of ¢



Note for this linear equation, the left hand side is a
linear combination of the derivatives of y (denoted
by yF) kE=0,..., n) where the coefficient of y(F) is a
function of ¢ (denoted ax(?)).

Linear: ag(t)y™ + ... + an_1 )y’ + an(t)y = g(t)

Determine if linear or non-linear:
Ex: ty" — t3y' — 3y = sin(t)
Ex: 2y"” — 3y’ — 3y? =0

Show that for some value of r, y = €"* is a soln to the

175¢ order linear homogeneous equation 2y’ — 6y = 0.
To show something is a solution, plug it in:
y = " implies ' = re"t. Plug into 2y’ — 6y = 0:
2re™ 4 6e"t = 0 implies 2r — 6 = 0 implies r = 3
Thus y = et is a solution to 2y’ — 6y = 0.
Show y = Ce’t is a solution to 2y’ — 6y = 0.

21" — 6y = 2(Ce’t) — 6(Ce’t) =20 (e3) — 6C(e3?)
= C[2(e’) — 6(e’")] = C(0) = 0.



If y(0) = 4, then 4 = Ce?© implies C = 4.

Thus by existence and uniqueness thm, y = 4e3t is
the unique solution to IVP: 2y’ + 6y = 0, y(0) = 4.

CH 2: Solve % = f(t,y) for special cases:

2.2: Separation of variables: N(y)dy = P(t)dt

2.1: First order linear eqn: Z—?z + p(t)y = g(t)

Ex 1: t%y' + 2ty = tsin(t)

Ex2: ¢y =ay+b

Ex 3: ¢/ + 3ty =1, y(0) =0

Note: can use either section 2.1 method (integrating

factor) or 2.2 method (separation of variables) to
solve ex 2 and 3.

Ex 1: t%y' + 2ty = sin(t)
(note, cannot use separation of variables).

t2y’ + 2ty = sin(t)
(t%y) = sin(t) implies [(t?y)'dt = [ sin(t)dt
(t?y) = —cos(t) + C implies y = —t2cos(t) + Ct~?




Ex. 2: Solve ‘C% = ay + b by separating variables:

Hp=dt = [otp=[dt = MR =14 C

In|lay + b =at +C implies elnlay+b| — pat+C
lay + b| = eCe® implies  ay + b= +(e“e)

ay = Ce? — b implies y=Ce — 2

Gen ex: Solve ¥’ 4 p(x)y = g(x)

Let F'(x) be an anti-derivative of p(x). Thus p(x) = F'(x)
" @y’ + [p(z)e" Py = g(x)e"

ey + [F'(2)eF @y = g(x)er @)



2.3: Modeling with differential equations.

Suppose salty water enters and leaves a tank at a
rate of 2 liters/minute.

Suppose also that the salt concentration of the water
entering the tank varies with respect to time accor-
ding to Q(t) - tsin(t?) g/liters where Q(¢) = amount
of salt in tank in grams. (Note: this is not realistic).

If the tank contains 4 liters of water and initially
contains 5g of salt, find a formula for the amount of
salt in the tank after £ minutes.

Let Q(t) = amount of salt in tank in grams.
Note Q(0) =5 g
rate in = (2 liters/min)(Q(¢) - tsin(t?) g/liters)

= 2Qtsin(t*) g/min

rate out = (2 liters/min)(%) = ¥ g/min

49 _ rate in - rate out = 2Qtsin(t?) — %

G = Q@tsin(t?) — ),  Q(0) =5



This is a first order linear ODE. It is also a separable
ODE. Thus can use either 2.1 or 2.2 methods.

Using the easier 2.2:
|G = [@tsin(t?) — §)dt = [ 2tsin(t*)dt — [ 3dt
Let u = t2, du = 2tdt

In|Q| = [ sin(u)du — ¢ = —cos(u) —

12
5 T

+C
?) -

= —cos(t

[\DIH~

|Q‘ _ 6—008(152)—%4—0 _ ece—cos(t )—<
Q _ Ce—cos(tQ)—%
Q0)=5: 5=Ce '7%=Ce ! Thus C = 5e
Thus Q(t) = 5e - e—c0s(t) =3
Thus Q(t) = se—cos(t)—5+1

Long-term behaviour:

t

Q(t) = 5(e=*))(eZ )e

As t — 0o, ez — 0, while 5(e~(t"))e are finite.

Thus as t — o0, Q(t) — 0.

10
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Figure 2.4.1 from Elementary Differential Equations and Boundary Value
Problems, Eighth Edition by William E. Boyce and Richard C. DiPrima

1

Note IVP, v = y35, y(xg) = 0 has an infinite number
of solutions,

while IVP, ¢/ = y3, y(xg) = yo where yo # 0 has a
unique solution.

Initial Value Problem: y(tg) = o
Use initial value to solve for C.

11



Section 2.4: Existence and Uniqueness.

In general, for y' = f(t,y), y(to) = yo,
solution may or may not exist and solution

may or may not be unique.

Wl

Example Non-unique: y' =y

Wl

y = 0 is a solution to 3y = y3 sincey’ =0 =03 =y

Suppose y # 0. Then d—g = y3 implies y— de = dx

[y~ s5dy = [ dz implies %y% =xz+C

ys = 2z + C implies y = :t\/(gx + ()3

Suppose y(3) = 0. Then0 = /(2 + C)3 = C = -2

The IVP, ¢/ = y3, y(3) = 0, has an infinite # of Sol’nsl

including: y = 0, y:\/(gx—2)3, y:—\/(gx—2)3

19



Examples: No solution:
Ex1l: ¢y =¢" +1
Ex 2: (y)? = -1
Ex 3 (IVP): & =y(1+ 1), y(0) =1
| % = [(1+2)dz implies Inly| =z +In|z|+C
‘y‘ _ eaz—l—ln|az|—|—C’ _ eazeln|x|ec _ C‘x‘ea: — O're®
y = £C'ze® implies y = Cxe”
y(0) =1: 1=C(0)e’ =0 implies
IVP % = y(1+ 1), y(0) =1 has no solution.

http://www.wolframalpha.com

slope field: {1,y(14+1/xz)}/sqrt(1+yA2(1+1/x)A2)
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Special cases:

Suppose f is cont. on (a,b) and the point ty € (a,d),
Solve IVP: % = f(t) y(to) — Yo

dy =
[ v- / ()
y = F(t) + C where F' is any anti-derivative of F'.
Initial Value Problem (IVP): y(t9) = yo

yo = F'(tg) + C implies C' = yg — F'(to)

Hence unique solution (if domain connected) to IVP:
y = F(t) +yo — F(to)

First order linear differential equation:

Thm 2.4.1: If p and g are continuous on (a,b) and
the point ¢y € (a,b), then there exists a unique fun-

ction y = ¢(t) defined on (a,b) that satisfies the
following initial value problem:

y' +p(t)y =g(t), y(to) = vo.

14



More general case (but still need hypothesis)

Thm 2.4.2: Suppose the functions
z= f(t,y) and z = g—gjj(t, y) are continuous on

(a,b) X (¢,d) and the point (tg,yo) € (a,b) X (¢, d),

then there exists an interval (tg — h,tg + h) C (a, b)
such that there exists a unique function y = ¢(¢)
defined on (tg — h,tg+ h) that satisfies the following
initial value problem:

y' = f(t,y), y(to) = vo.

If possible without solving, determine where the
solution exists for the following initial value prob-
lems:

If not possible without solving, state where in the
ty-plane, the hypothesis of theorem 2.4.2 is satisfied.
In other words, use theorm 2.4.2 to determine where
for some interval about tg, a solution to IVP, ¢y =
f(t,y), y(to) = yo exists and is unique.

Example 1: ty' —y =1, y(to) = yo

15



Example 2: ¢y = ln\i, y(3) =6

Example 3: (t* — 1)y’ — =% = In|t], y(3) =6

Section 2.4 example: % = (1_t)1(2_y)

F(y,t) = = t)(2_ 7 is continuous for all ¢ # 1, y # 2

oOF __ 6((1—75)1(2—y)) _ _1 (2—y) " _ 1

oy Ay (1-t) Oy (1-t)(2—y)?
%—1; is continuous for all t # 1, y £ 2

Thus the IVP % = (1_t)1(2_y), y(tg) = yo has a

unique solution if ¢y #£ 1, yg # 2.

_ _ 1 _
Note that if yg = 2, dt = e y(tg) = 2 has
two solutions if ¢ty # 1 (and if we allow vertical slope
in domain. Note normally our convention will be to
NOT allow vertical slope in domain of solution).

: dy
Note that if tg = 1, Z¥ = (1_t>1(2_y), y(1) = yo has
no solutions.

16
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(1,1/((1 = )(2 = y)/sart(1 + 1/((1 — )2 — 1))?)

Solve via separation of variables: % = (1—t)1(2—y)l
[ dt
J2—y)dy = [ 1=
y2
y2—4y—2ln|1—t\+C’:0
Y — 4:|:\/16—|—4(2ln|1—t|—|-0) — 2+ \/4+2n[l —t[+C

y=2++/2In|1 —t|+C

Find domain:
2in|1 —t|+C >0and t # 1 and y # 2

17



NOTE: the convention in this class to to choosell
largest possible connected domain where tang-Jj
ent line to solution is never vertical.

2in|1 —t| > —C and t # 1 and y # 2 implies

In|l —t| > % Note: we want to find domain

for this C' and thus this C can’t swallow constants).

_c . . . . .
|1 —t| > e~ 2 since €* is an increasing function.
l—t<-—-eTorl—t>e 2

C C
—t<—-e 2 —-lor—-t>e 2 —1

_C .
Domain:{t>6 Prl o ift > 1
t< —e~5 41 ifty<l.

Note: Domain is much easier to determine when the
ODE is linear.

Find C given y(tp) = yo: yo = 24+/2In|1 — to| + CI

+(yo — 2) = 1/2In|1 —to| + C

18



(yo —2)* —2In|1 —to| =

y=2%4+/2n|]l—t|+C

y =2 /2in|1 —t| + (yo — 2)% — 2In|1 — ¢y

y—2:|:\/y0—2 —I—Zn((l1 tt))2

_ ¢ .
Domain:{t>€ Pl iftg > 1
t< —e~ 5 +1 iftg<l1.

€

C _ (yo—2)%—2in|1—tg] _ (yg—2)2
2 — e 2 — ’1 — t0’6 2

(yg—2)2

_ (yp—2)*? )
Domain: {t>1+1_t06 2 if tog > 1
t<1—1|1—tgle=" =2~ ifty<1.

2.4 #27b. Solve Bernoulli’s equation,
y' +pt)y =g)y",
when n # 0,1 by changing it

y "y +pt)yt " = g(2)

when n # 0,1 by changing it to a linear equation by
substituting v = y' ™"

19



Example: Solve ty’ + 2t %y = 2t~ 2%y°

20)



Section 2.5: Autonomous equations: y' = f(y)

Example: Exponential Growth/Decay
Example: population growth /radioactive decay

y' = ry, y(0) = yo implies y = ype""

r >0 r <0

Example: Logistic growth: v = h(y)y
Example: ' =r(1 — %)y

y vs f(y) slope field:

Equilibrium solutions:

Ast — o0,ify >0,y —

yo K
Yo+ (K —yo)e "t

Solution: y =

21



Section 2.5 Autonomous equations: y' = f(y)

If given either differential equation 3y’ = f(y)
OR direction field:

Find equilibrium solutions and determine if
stable, unstable, semi-stable.

Understand what the above means.

Asymptotically stable:

Asymptotically unstable:

Asymptotically semi-stable:

29



