Existence and Uniqueness for LINEAR DEs.

Homogeneous:

$$y^{(n)} + p_1(t)y^{(n-1)} + \dots + p_{n-1}(t)y' + p_n(t)y = 0$$

Non-homogeneous: $g(t) \neq 0$

$$y^{(n)} + p_1(t)y^{(n-1)} + \dots p_{n-1}(t)y' + p_n(t)y = g(t)$$

1st order LINEAR differential equation:

Thm 2.4.1: If $p:(a,b) \to R$ and $g:(a,b) \to R$ are continuous and $a < t_0 < b$, then there exists a unique function $y = \phi(t), \ \phi:(a,b) \to R$ that satisfies the

IVP:
$$y' + p(t)y = g(t), y(t_0) = y_0$$

Thm: If $y = \phi_1(t)$ is a solution to <u>homogeneous</u> equation, y' + p(t)y = 0, then $y = c\phi_1(t)$ is the general solution to this equation.

If in addition $y = \psi(t)$ is a solution to <u>non-homogeneous</u> equation, y' + p(t)y = g(t), then $y = c\phi_1(t) + \psi(t)$ is the general solution to this equation.

Partial proof: $y = \phi_1(t)$ is a solution to y' + p(t)y = 0 implies

Thus $y = c\phi_1(t)$ is a solution to y' + p(t)y = 0 since

$$y = \psi(t)$$
 is a solution to $y' + p(t)y = g(t)$ implies

Thus $y = c\phi_1(t) + \psi(t)$ is a solution to y' + p(t)y = g(t) since

2nd order LINEAR differential equation:

Thm 3.2.1: If $p:(a,b) \to R$, $q:(a,b) \to R$, and $g:(a,b) \to R$ are continuous and $a < t_0 < b$, then there exists a unique function $y = \phi(t)$, $\phi:(a,b) \to R$ that satisfies the initial value problem

$$y'' + p(t)y' + q(t)y = g(t),$$

$$y(t_0) = y_0,$$

$$y'(t_0) = y'_0$$

Thm 3.2.2: If ϕ_1 and ϕ_2 are two solutions to a <u>homogeneous</u> linear differential equation, then $c_1\phi_1 + c_2\phi_2$ is also a solution to this linear differential equation.

Proof of thm 3.2.2:

Since $y(t) = \phi_i(t)$ is a solution to the linear homogeneous differential equation y'' + py' + qy = 0 where p and q are functions of t (note this includes the case with constant coefficients), then

Claim: $y(t) = c_1\phi_1(t) + c_2\phi_2(t)$ is also a solution to y'' + py' + qy = 0

Pf of claim:

Second order differential equation:

Linear equation with constant coefficients: If the second order differential equation is

$$ay'' + by' + cy = 0,$$

then $y = e^{rt}$ is a solution

Need to have two independent solutions.

Solve the following IVPs:

1.)
$$y'' - 6y' + 9y = 0$$

$$y(0) = 1, \ y'(0) = 2$$

$$2.) 4y'' - y' + 2y = 0$$

$$y(0) = 3, \ y'(0) = 4$$

3.)
$$4y'' + 4y' + y = 0$$

$$y(0) = 6, \ y'(0) = 7$$

4.)
$$2y'' - 2y = 0$$

$$y(0) = 5, \ y'(0) = 9$$

ay'' + by' + cy = 0, $y = e^{rt}$, then $ar^2e^{rt} + bre^{rt} + ce^{rt} = 0$ implies $ar^2 + br + c = 0$,

Suppose $r = r_1, r_2$ are solutions to $ar^2 + br + c = 0$ $r_1, r_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

If $r_1 \neq r_2$, then $b^2 - 4ac \neq 0$. Hence a general solution is $y = c_1 e^{r_1 t} + c_2 e^{r_2 t}$

If $b^2 - 4ac > 0$, general solution is $y = c_1 e^{r_1 t} + c_2 e^{r_2 t}$.

If $b^2 - 4ac < 0$, change format to linear combination of real-valued functions instead of complex valued functions by using Euler's formula.

general solution is $y = c_1 e^{dt} cos(nt) + c_2 e^{dt} sin(nt)$ where $r = d \pm in$

If $b^2 - 4ac = 0$, $r_1 = r_2$, so need 2nd (independent) solution: te^{r_1t}

Hence general solution is $y = c_1 e^{r_1 t} + c_2 t e^{r_1 t}$.

Initial value problem: use $y(t_0) = y_0$, $y'(t_0) = y'_0$ to solve for c_1, c_2 to find unique solution.

Derivation of general solutions:

If $b^2 - 4ac > 0$ we guessed e^{rt} is a solution and noted that any linear combination of solutions is a solution to a homogeneous linear differential equation.

Section 3.3: If $b^2 - 4ac < 0$, :

Changed format of $y = c_1 e^{r_1 t} + c_2 e^{r_2 t}$ to linear combination of real-valued functions instead of complex valued functions by using Euler's formula:

$$e^{it} = \cos(t) + i\sin(t)$$

Hence
$$e^{(d+in)t} = e^{dt}e^{int} = e^{dt}[cos(nt) + isin(nt)]$$

Let
$$r_1 = d + in, r_2 = d - in$$

$$y = c_1 e^{r_1 t} + c_2 e^{r_2 t}$$

$$= c_1 e^{dt} \left[\cos(nt) + i\sin(nt) \right] + c_2 e^{dt} \left[\cos(-nt) + i\sin(-nt) \right]$$

$$=c_1e^{dt}cos(nt)+ic_1e^{dt}sin(nt)+c_2e^{dt}cos(nt)-ic_2e^{dt}sin(nt)$$

$$=(c_1+c_2)e^{dt}cos(nt)+i(c_1-c_2)e^{dt}sin(nt)$$

$$= k_1 e^{dt} cos(nt) + k_2 e^{dt} sin(nt)$$

Section 3.4: If $b^2 - 4ac = 0$, then $r_1 = r_2$.

Hence one solution is $y = e^{r_1 t}$ Need second solution.

If $y = e^{rt}$ is a solution, $y = ce^{rt}$ is a solution.

How about $y = v(t)e^{rt}$?

$$y' = v'(t)e^{rt} + v(t)re^{rt}$$

$$y'' = v''(t)e^{rt} + v'(t)re^{rt} + v'(t)re^{rt} + v(t)r^{2}e^{rt}$$
$$= v''(t)e^{rt} + 2v'(t)re^{rt} + v(t)r^{2}e^{rt}$$

$$ay'' + by' + cy = 0$$

$$a(v''e^{rt} + 2v're^{rt} + vr^2e^{rt}) + b(v'e^{rt} + vre^{rt}) + cve^{rt} = 0$$

$$a(v''(t) + 2v'(t)r + v(t)r^{2}) + b(v'(t) + v(t)r) + cv(t) = 0$$

$$av''(t) + 2av'(t)r + av(t)r^2 + bv'(t) + bv(t)r + cv(t) = 0$$

$$av''(t) + (2ar + b)v'(t) + (ar^2 + br + c)v(t) = 0$$

$$av''(t) + (2a(\frac{-b}{2a}) + b)v'(t) + 0 = 0$$

since
$$ar^2 + br + c = 0$$
 and $r = \frac{-b}{2a}$

$$av''(t) + (-b+b)v'(t) = 0.$$

Thus av''(t) = 0.

Hence v''(t) = 0 and $v'(t) = k_1$ and $v(t) = k_1t + k_2$

Hence $v(t)e^{r_1t} = (k_1t + k_2)e^{r_1t}$ is a soln

Thus te^{r_1t} is a nice second solution.

Hence general solution is $y = c_1 e^{r_1 t} + c_2 t e^{r_1 t}$

Solve: y'' + y = 0, y(0) = -1, y'(0) = -3

 $r^{2} + 1 = 0$ implies $r^{2} = -1$. Thus $r = \pm i$.

Since $r = 0 \pm 1i$, $y = k_1 cos(t) + k_2 sin(t)$.

Then $y' = -k_1 sin(t) + k_2 cos(t)$

$$y(0) = -1$$
: $-1 = k_1 cos(0) + k_2 sin(0)$ implies $-1 = k_1$

$$y'(0) = -3$$
: $-3 = -k_1 sin(0) + k_2 cos(0)$ implies $-3 = k_2$

Thus IVP solution: y = -cos(t) - 3sin(t)

When does the following IVP have unique sol'n:

IVP:
$$ay'' + by' + cy = 0$$
, $y(t_0) = y_0$, $y'(t_0) = y_1$.

Suppose
$$y = c_1 \phi_1(t) + c_2 \phi_2(t)$$
 is a solution to $ay'' + by' + cy = 0$. Then $y' = c_1 \phi_1'(t) + c_2 \phi_2'(t)$

$$y(t_0) = y_0$$
: $y_0 = c_1\phi_1(t_0) + c_2\phi_2(t_0)$

$$y'(t_0) = y_1$$
: $y_1 = c_1 \phi_1'(t_0) + c_2 \phi_2'(t_0)$

To find IVP solution, need to solve above system of two equations for the unknowns c_1 and c_2 .

Note the IVP has a unique solution if and only if the above system of two equations has a unique solution for c_1 and c_2 .

Note that in these equations c_1 and c_2 are the unknowns and $y_0, \phi_1(t_0), \phi_2(t_0), y_1, \phi'_1(t_0), \phi'_2(t_0)$ are the constants. We can translate this linear system of equations into matrix form:

Note this equation has a unique solution if and only if

$$\det \begin{bmatrix} \phi_1(t_0) & \phi_2(t_0) \\ \phi'_1(t_0) & \phi'_2(t_0) \end{bmatrix} = \begin{vmatrix} \phi_1 & \phi_2 \\ \phi'_1 & \phi'_2 \end{vmatrix} = \phi_1 \phi'_2 - \phi'_1 \phi_2 \neq 0$$

Definition: The Wronskian of two differential functions, ϕ_1 and ϕ_2 is $W(\phi_1, \phi_2) = \phi_1 \phi_2' - \phi_1' \phi_2 = \begin{vmatrix} \phi_1 & \phi_2 \\ \phi_1' & \phi_2' \end{vmatrix}$

Examples:

1.)
$$W(\cos(t), \sin(t)) = \begin{vmatrix} \cos(t) & \sin(t) \\ -\sin(t) & \cos(t) \end{vmatrix}$$
$$= \cos^{2}(t) + \sin^{2}(t) = 1 > 0.$$

2.) $W(e^{dt}cos(nt), e^{dt}sin(nt)) =$

$$\begin{vmatrix} e^{dt}cos(nt) & e^{dt}sin(nt) \\ de^{dt}cos(nt) - ne^{dt}sin(nt) & de^{dt}sin(nt) + ne^{dt}cos(nt) \end{vmatrix}$$

$$=e^{dt}\cos(nt)(de^{dt}\sin(nt)+ne^{dt}\cos(nt))-e^{dt}\sin(nt)(de^{dt}\cos(nt)-ne^{dt}\sin(nt))$$

$$=e^{2dt}[\cos(nt)(d\sin(nt)+n\cos(nt))-\sin(nt)(d\cos(nt)-n\sin(nt))]$$

$$=e^{2dt}[d\cos(nt)\sin(nt)+n\cos^{2}(nt)-d\sin(nt)\cos(nt)+n\sin^{2}(nt)])$$

$$=e^{2dt}[n\cos^{2}(nt)+n\sin^{2}(nt)]$$

$$=ne^{2dt}[\cos^{2}(nt)+\sin^{2}(nt)] = ne^{2dt} > 0 \text{ for all } t.$$

Definition: The Wronskian of two differential functions, f and g is

$$W(f,g) = fg' - f'g = \left| \begin{array}{cc} f & g \\ f' & g' \end{array} \right|$$

Thm 3.2.3: Suppose that

 ϕ_1 and ϕ_2 are two solutions to y'' + p(t)y' + q(t)y = 0. If $W(\phi_1, \phi_2)(t_0) = \phi_1(t_0)\phi_2'(t_0) - \phi_1'(t_0)\phi_2(t_0) \neq 0$, then

there is a unique choice of constants c_1 and c_2 such that $c_1\phi_1+c_2\phi_2$ satisfies this homogeneous linear differential equation and initial conditions, $y(t_0)=y_0$, $y'(t_0)=y'_0$.

Thm 3.2.4: Given the hypothesis of thm 3.2.1, suppose that ϕ_1 and ϕ_2 are two solutions to

$$y'' + p(t)y' + q(t)y = 0.$$

If $W(\phi_1, \phi_2)(t_0) \neq 0$, for some $t_0 \in (a, b)$, then any solution to this homogeneous linear differential equation can be written as $y = c_1\phi_1 + c_2\phi_2$ for some c_1 and c_2 .

Defn If ϕ_1 and ϕ_2 satisfy the conditions in thm 3.2.4, then ϕ_1 and ϕ_2 form a fundamental set of solutions to y'' + p(t)y' + q(t)y = 0.

Thm 3.2.5: Given any second order homogeneous linear differential equation, there exist a pair of functions which form a fundamental set of solutions.

3.3: Linear Independence and the Wronskian

Defn: f and g are linearly dependent if there exists constants c_1, c_2 such that $c_1 \neq 0$ or $c_2 \neq 0$ and $c_1 f(t) + c_2 g(t) = 0$ for all $t \in (a, b)$

Thm 3.3.1: If $f:(a,b) \to R$ and $g(a,b) \to R$ are differentiable functions on (a,b) and if $W(f,g)(t_0) \neq 0$ for some $t_0 \in (a,b)$, then f and g are linearly independent on (a,b). Moreover, if f and g are linearly dependent on (a,b), then W(f,g)(t) = 0 for all $t \in (a,b)$

If
$$c_1 f(t) + c_2 g(t) = 0$$
 for all t, then $c_1 f'(t) + c_2 g'(t) = 0$

Solve the following linear system of equations for c_1, c_2

$$c_1 f(t_0) + c_2 g(t_0) = 0$$

$$c_1 f'(t_0) + c_2 g'(t_0) = 0$$

$$\begin{bmatrix} f(t_0) & g(t_0) \\ f'(t_0) & g'(t_0) \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Thm: Suppose $c_1\phi_1(t) + c_2\phi_2(t)$ is a general solution to

$$ay'' + by' + cy = 0,$$

If ψ is a solution to

$$ay'' + by' + cy = g(t)$$
 [*],

Then $\psi + c_1\phi_1(t) + c_2\phi_2(t)$ is also a solution to [*].

Moreover if γ is also a solution to [*], then there exist constants c_1, c_2 such that

$$\gamma = \psi + c_1 \phi_1(t) + c_2 \phi_2(t)$$

Or in other words, $\psi + c_1\phi_1(t) + c_2\phi_2(t)$ is a general solution to [*].

Proof:

Define
$$L(f) = af'' + bf' + cf$$
.

Recall L is a linear function.

Let $h = c_1\phi_1(t) + c_2\phi_2(t)$. Since h is a solution to the differential equation, ay'' + by' + cy = 0,

Since ψ is a solution to ay'' + by' + cy = g(t),

We will now show that $\psi + c_1\phi_1(t) + c_2\phi_2(t) = \psi + h$ is also a solution to [*].

Since γ a solution to ay'' + by' + cy = g(t),

We will first show that $\gamma - \psi$ is a solution to the differential equation ay'' + by' + cy = 0.

Since $\gamma - \psi$ is a solution to ay'' + by' + cy = 0 and

$$c_1\phi_1(t) + c_2\phi_2(t)$$
 is a general solution to $ay'' + by' + cy = 0$,

there exist constants c_1, c_2 such that

$$\gamma - \psi = \underline{\hspace{1cm}}$$

Thus $\gamma = \psi + c_1 \phi_1(t) + c_2 \phi_2(t)$.

Thm:

Suppose f_1 is a solution to $ay'' + by' + cy = g_1(t)$ and f_2 is a solution to $ay'' + by' + cy = g_2(t)$, then $f_1 + f_2$ is a solution to $ay'' + by' + cy = g_1(t) + g_2(t)$

Proof: Let L(f) = af'' + bf' + cf.

Since f_1 is a solution to $ay'' + by' + cy = g_1(t)$,

Since f_2 is a solution to $ay'' + by' + cy = g_2(t)$,

We will now show that $f_1 + f_2$ is a solution to $ay'' + by' + cy = g_1(t) + g_2(t)$.

Sidenote: The proofs above work even if a, b, c are functions of t instead of constants.

Examples: Find a suitable form for ψ for the following differential equations:

1.)
$$y'' - 4y' - 5y = 4e^{2t}$$

2.)
$$y'' - 4y' - 5y = t^2 - 2t + 1$$

3.)
$$y'' - 4y' - 5y = 4\sin(3t)$$

4.)
$$y'' - 5y = 4sin(3t)$$

5.)
$$y'' - 4y' = t^2 - 2t + 1$$

6.)
$$y'' - 4y' - 5y = 4(t^2 - 2t - 1)e^{2t}$$

7.)
$$y'' - 4y' - 5y = 4\sin(3t)e^{2t}$$

8.)
$$y'' - 4y' - 5y = 4(t^2 - 2t - 1)sin(3t)e^{2t}$$

9.)
$$y'' - 4y' - 5y = 4\sin(3t) + 4\sin(3t)e^{2t}$$

10.)
$$y'' - 4y' - 5y$$

= $4sin(3t)e^{2t} + 4(t^2 - 2t - 1)e^{2t} + t^2 - 2t - 1$

11.)
$$y'' - 4y' - 5y = 4\sin(3t) + 5\cos(3t)$$

12.)
$$y'' - 4y' - 5y = 4e^{-t}$$

To solve
$$ay'' + by' + cy = g_1(t) + g_2(t) + ...g_n(t)$$
 [**]

- 1.) Find the general solution to ay'' + by' + cy = 0: $c_1\phi_1 + c_2\phi_2$
- 2.) For each g_i , find a solution to $ay'' + by' + cy = g_i$: ψ_i

This includes plugging guessed solution ψ_i into $ay'' + by' + cy = g_i$.

The general solution to [**] is

$$c_1\phi_1 + c_2\phi_2 + \psi_1 + \psi_2 + \dots \psi_n$$

3.) If initial value problem:

Once general solution is known, can solve initial value problem (i.e., use initial conditions to find c_1, c_2).

Solve $y'' - 4y' - 5y = 4\sin(3t)$, y(0) = 6, y'(0) = 7.

1.) First solve homogeneous equation:

Find the general solution to y'' - 4y' - 5y = 0:

Guess $y = e^{rt}$ for HOMOGENEOUS equation:

$$y' = re^{rt}, y' = r^2e^{rt}$$

$$y'' - 4y' - 5y = 0$$

$$r^2e^{rt} - 4re^{rt} - 5e^{rt} = 0$$

$$e^{rt}(r^2 - 4r - 5) = 0$$

 $e^{rt} \neq 0$, thus can divide both sides by e^{rt} :

$$r^2 - 4r - 5 = 0$$

$$(r+1)(r-5) = 0$$
. Thus $r = -1, 5$.

Thus $y = e^{-t}$ and $y = e^{5t}$ are both solutions to LINEAR HOMOGENEOUS equation.

Thus the general solution to the 2nd order LINEAR HOMOGENEOUS equation is

$$y = c_1 e^{-t} + c_2 e^{5t}$$

2.) Find one solution to non-homogeneous eq'n:

Find a solution to ay'' + by' + cy = 4sin(3t):

Guess
$$y = Asin(3t) + Bcos(3t)$$

$$y' = 3Acos(3t) - 3Bsin(3t)$$

$$y'' = -9Asin(3t) - 9Bcos(3t)$$

$$y'' - 4y' - 5y = 4\sin(3t)$$

$$-9Asin(3t)$$
 - $9Bcos(3t)$
 $12Bsin(3t)$ - $12Acos(3t)$
 $-5Asin(3t)$ - $5cos(3t)$

$$(12B - 14A)sin(3t) - (-14B - 12A)cos(3t) = 4sin(3t)$$

Since $\{sin(3t), cos(3t)\}$ is a linearly independent set:

$$12B - 14A = 4$$
 and $-14B - 12A = 0$

Thus
$$A = -\frac{14}{12}B = -\frac{7}{6}B$$
 and

$$12B - 14(-\frac{7}{6}B) = 12B + 7(\frac{7}{3}B) = \frac{36+49}{3}B = \frac{85}{3}B = 4$$

Thus
$$B = 4(\frac{3}{85}) = \frac{12}{85}$$
 and $A = -\frac{7}{6}B = -\frac{7}{6}(\frac{12}{85}) = -\frac{14}{85}$

Thus $y = (-\frac{14}{85})sin(3t) + \frac{12}{85}cos(3t)$ is one solution to the nonhomogeneous equation.

Thus the general solution to the 2nd order linear non-homogeneous equation is

$$y = c_1 e^{-t} + c_2 e^{5t} - (\frac{14}{85}) \sin(3t) + \frac{12}{85} \cos(3t)$$

3.) If initial value problem:

Once general solution is known, can solve initial value problem (i.e., use initial conditions to find c_1, c_2).

NOTE: you must know the GENERAL solution to the ODE BEFORE you can solve for the initial values. The homogeneous solution and the one nonhomogeneous solution found in steps 1 and 2 above do NOT need to separately satisfy the initial values.

Solve
$$y'' - 4y' - 5y = 4\sin(3t)$$
, $y(0) = 6$, $y'(0) = 7$.

General solution:
$$y = c_1 e^{-t} + c_2 e^{5t} - (\frac{14}{85}) \sin(3t) + \frac{12}{85} \cos(3t)$$

Thus
$$y' = -c_1 e^{-t} + 5c_2 e^{5t} - (\frac{42}{85})cos(3t) - \frac{36}{85}sin(3t)$$

$$y(0) = 6$$
: $6 = c_1 + c_2 + \frac{12}{85}$ $\frac{498}{85} = c_1 + c_2$

$$y'(0) = 7$$
: $7 = -c_1 + 5c_2 - \frac{42}{85}$ $\frac{637}{85} = -c_1 + 5c_2$

$$6c_2 = \frac{498+637}{85} = \frac{1135}{85} = \frac{227}{17}$$
. Thus $c_2 = \frac{227}{102}$.

$$c_1 = \frac{498}{85} - c_2 = \frac{498}{85} - \frac{227}{102} = \frac{2988 - 1135}{510} = \frac{1853}{510} = \frac{109}{30}$$

Thus
$$y = (\frac{109}{30})e^{-t} + (\frac{227}{102})e^{5t} - (\frac{14}{85})sin(3t) + \frac{12}{85}cos(3t)$$
.

Partial Check:
$$y(0) = (\frac{109}{30}) + (\frac{227}{102}) + \frac{12}{85} = 6.$$

$$y'(0) = -\frac{109}{30} + 5(\frac{227}{102}) - \frac{42}{85} = 7.$$

$$(e^{-t})'' - 4(e^{-t})' - 5(e^{-t}) = 0$$
 and $(e^{5t})'' - 4(e^{5t})' - 5(e^{5t}) = 0$

Potential proofs for exam 1:

Proof by (counter) example:

- 1. Prove a function is not 1:1, not onto, not a bijection, not linear.
- 2. Prove that a differential equation can have multiple solutions.

Prove convergence of a series using ratio test.

Induction proof.

Prove a function is linear.

Theorem 3.2.2: If $y = \phi_1(t)$ and $y = \phi_2(t)$ are solutions to the 2nd order linear ODE, ay'' + by' + cy = 0, then their linear combination $y = c_1\phi_1(t) + c_2\phi_2(t)$ is also a solution for constants c_1 and c_2 .

Note you may use what you know from both pre-calculus and calculus (e.g., integration and derivatives are linear).