Summary of sections 3.1, 3, 4: Solve linear homogeneous 2nd order DE with constant coefficients.

Solve $a y^{\prime \prime}+b y^{\prime}+c y=0 . \quad$ Educated guess $y=e^{r t}$, then $a r^{2} e^{r t}+b r e^{r t}+c e^{r t}=0$ implies $a r^{2}+b r+c=0$,

Suppose $r=r_{1}, r_{2}$ are solutions to $a r^{2}+b r+c=0$

$$
r_{1}, r_{2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

If $r_{1} \neq r_{2}$, then $b^{2}-4 a c \neq 0$. Hence a general solution is $y=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}$

If $b^{2}-4 a c>0$, general solution is $y=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}$.

If $b^{2}-4 a c<0$, change format to linear combination of real-valued functions instead of complex valued functions by using Euler's formula.
general solution is $y=c_{1} e^{d t} \cos (n t)+c_{2} e^{d t} \sin (n t)$ where $r=d \pm i n$

If $b^{2}-4 a c=0, r_{1}=r_{2}$, so need 2nd (independent) solution: $t e^{r_{1} t}$

Hence general solution is $y=c_{1} e^{r_{1} t}+c_{2} t e^{r_{1} t}$.
Initial value problem: use $y\left(t_{0}\right)=y_{0}, y^{\prime}\left(t_{0}\right)=y_{0}^{\prime}$ to solve for c_{1}, c_{2} to find unique solution.

Examples:

Ex 1: Solve $y^{\prime \prime}-3 y^{\prime}-4 y=0, \quad y(0)=1, y^{\prime}(0)=2$.
If $y=e^{r t}$, then $y^{\prime}=r e^{r t}$ and $y^{\prime \prime}=r^{2} e^{r t}$.
$r^{2} e^{r t}-3 r e^{r t}-4 e^{r t}=0$
$r^{2}-3 r-4=0$ implies $(r-4)(r+1)=0$. Thus $r=4,-1$
Hence general solution is $y=c_{1} e^{4 t}+c_{2} e^{-t}$
Solution to IVP:
Need to solve for 2 unknowns, $c_{1} \& c_{2}$; thus need 2 eqns:
$y=c_{1} e^{4 t}+c_{2} e^{-t}, \quad y(0)=1 \quad$ implies $\quad 1=c_{1}+c_{2}$
$y^{\prime}=4 c_{1} e^{4 t}-c_{2} e^{-t}, \quad y^{\prime}(0)=2$ implies $2=4 c_{1}-c_{2}$
Thus $3=5 c_{1} \&$ hence $c_{1}=\frac{3}{5}$ and $c_{2}=1-c_{1}=1-\frac{3}{5}=\frac{2}{5}$
Thus IVP soln: $y=\frac{3}{5} e^{4 t}+\frac{2}{5} e^{-t}$
Ex 2: Solve $y^{\prime \prime}-3 y^{\prime}+4 y=0$.
$y=e^{r t}$ implies $r^{2}-3 r+4=0$ and hence
$r=\frac{3 \pm \sqrt{(-3)^{2}-4(1)(4)}}{2}=\frac{3}{2} \pm \frac{\sqrt{9-16}}{2}=\frac{3}{2} \pm i \frac{\sqrt{7}}{2}$
Hence general sol'n is $y=c_{1} e^{\frac{3}{2} t} \cos \left(\frac{\sqrt{7}}{2} t\right)+c_{2} e^{\frac{3}{2} t} \sin \left(\frac{\sqrt{7}}{2} t\right)$
Ex 3: $y^{\prime \prime}-6 y^{\prime}+9 y=0$ implies $r^{2}-6 r+9=(r-3)^{2}=0$ Repeated root, $r=3$ implies general solution is $y=c_{1} e^{3 t}+c_{2} t e^{3 t}$

So why did we guess $y=e^{r t}$?
Goal: Solve linear homogeneous 2nd order DE with constant coefficients,

$$
a y^{\prime \prime}+b y^{\prime}+c y=0 \text { where } a, b, c \text { are constants }
$$

Standard mathematical technique: make up simpler problems and see if you can generalize to the problem of interest.

Ex: linear homogeneous 1rst order DE: $y^{\prime}+2 y=0$
integrating factor $u(t)=e^{\int 2 d t}=e^{2 t}$
$y^{\prime} e^{2 t}+2 e^{2 t} y=0$
$\left(e^{2 t} y\right)^{\prime}=0$. Thus $\int\left(e^{2 t} y\right)^{\prime} d t=\int 0 d t$. Hence $e^{2 t} y=C$
So $y=C e^{-2 t}$.
Thus exponential function could also be a solution to a linear homogeneous 2nd order DE

Ex: Simple linear homog 2 nd order DE $y^{\prime \prime}+2 y^{\prime}=0$.
Let $v=y^{\prime}$, then $v^{\prime}=y^{\prime \prime}$
$y^{\prime \prime}+2 y^{\prime}=0$ implies $v^{\prime}+2 v=0$ implies $v=e^{2 t}$.
Thus $v=y^{\prime}=\frac{d y}{d t}=C e^{-2 t}$. Hence $d y=C e^{-2 t} d t$ and

$$
y=c_{1} e^{-2 t}+c_{2} .
$$

$$
y=c_{1} e^{-2 t}+c_{2}
$$

Note 2 integrations give us 2 constants.

Note also that the general solution is a linear combination of two solutions:

Let $c_{1}=1, c_{2}=0$, then we see, $y(t)=e^{-2 t}$ is a solution.
Let $c_{1}=0, c_{2}=1$, then we see, $y(t)=1$ is a solution.
The general solution is a linear combination of two solutions:

$$
y=c_{1} e^{-2 t}+c_{2}(1)
$$

Recall: you have seen this before:
Solve linear homogeneous matrix equation $A \mathbf{y}=\mathbf{0}$.
The general solution is a linear combination of linearly independent vectors that span the solution space:

$$
\mathbf{y}=c_{1} \mathbf{v}_{\mathbf{1}}+\ldots c_{n} \mathbf{v}_{\mathbf{n}}
$$

FYI: You could see this again:
Math 4050: Solve homogeneous linear recurrance relation $x_{n}-x_{n-1}-x_{n-2}=0$ where $x_{1}=1$ and $x_{2}=1$.

Fibonacci sequence: $x_{n}=x_{n-1}+x_{n-2}$

$$
1,1,2,3,5,8,13,21, \ldots
$$

Note $x_{n}=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n}$

Proof: $x_{n}=x_{n-1}+x_{n-2}$ implies $x_{n}-x_{n-1}-x_{n-2}=0$
Suppose $x_{n}=r^{n}$. Then $x_{n-1}=r^{n-1}$ and $x_{n-2}=r^{n-2}$
Then $0=x_{n}-x_{n-1}-x_{n-2}=r^{n}-r^{n-1}-r^{n-2}$
Thus $r^{n-2}\left(r^{2}-r-1\right)=0$.
Thus either $r=0$ or $r=\frac{1 \pm \sqrt{1-4(1)(-1)}}{2}=\frac{1 \pm \sqrt{5}}{2}$
Thus $x_{n}=0, \quad x_{n}=\left(\frac{1+\sqrt{5}}{2}\right)^{n} \quad$ and $\quad f_{n}=\left(\frac{1-\sqrt{5}}{2}\right)^{n}$ are 3 different sequences that satisfy the
homog linear recurrence relation: $x_{n}-x_{n-1}-x_{n-2}=0$.
Hence $x_{n}=c_{1}\left(\frac{1+\sqrt{5}}{2}\right)^{n}+c_{2}\left(\frac{1-\sqrt{5}}{2}\right)^{n}$ also satisfies this
homogeneous linear recurrence relation.
Suppose the initial conditions are $x_{1}=1$ and $x_{2}=1$
Then for $n=1: x_{1}=1$ implies $c_{1}+c_{2}=1$
For $n=2: x_{2}=1$ implies $c_{1}\left(\frac{1+\sqrt{5}}{2}\right)+c_{2}\left(\frac{1-\sqrt{5}}{2}\right)=1$
We can solve this for c_{1} and c_{2} to determine that

$$
x_{n}=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n}
$$

Existence and Uniqueness for LINEAR DEs.

Homogeneous:

$$
y^{(n)}+p_{1}(t) y^{(n-1)}+\ldots p_{n-1}(t) y^{\prime}+p_{n}(t) y=0
$$

Non-homogeneous: $g(t) \neq 0$

$$
y^{(n)}+p_{1}(t) y^{(n-1)}+\ldots p_{n-1}(t) y^{\prime}+p_{n}(t) y=g(t)
$$

1st order LINEAR differential equation:

Thm 2.4.1: If $p:(a, b) \rightarrow R$ and $g:(a, b) \rightarrow R$ are continuous and $a<t_{0}<b$, then there exists a unique function $y=\phi(t), \phi:(a, b) \rightarrow R$ that satisfies the

$$
\text { IVP: } y^{\prime}+p(t) y=g(t), \quad y\left(t_{0}\right)=y_{0}
$$

Thm: If $y=\phi_{1}(t)$ is a solution to homogeneous equation, $y^{\prime}+p(t) y=0$, then $y=c \phi_{1}(t)$ is the general solution to this equation.

If in addition $y=\psi(t)$ is a solution to non-homogeneous equation, $y^{\prime}+p(t) y=g(t)$, then $y=c \phi_{1}(t)+\psi(t)$ is the general solution to this equation.

Partial proof: $y=\phi_{1}(t)$ is a solution to $y^{\prime}+p(t) y=0$ implies

Thus $y=c \phi_{1}(t)$ is a solution to $y^{\prime}+p(t) y=0$ since
$y=\psi(t)$ is a solution to $y^{\prime}+p(t) y=g(t)$ implies

Thus $y=c \phi_{1}(t)+\psi(t)$ is a solution to $y^{\prime}+p(t) y=g(t)$ since

2nd order LINEAR differential equation:

Thm 3.2.1: If $p:(a, b) \rightarrow R, q:(a, b) \rightarrow R$, and $g:$ $(a, b) \rightarrow R$ are continuous and $a<t_{0}<b$, then there exists a unique function $y=\phi(t), \phi:(a, b) \rightarrow R$ that satisfies the initial value problem

$$
\begin{gathered}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t), \\
y\left(t_{0}\right)=y_{0} \\
y^{\prime}\left(t_{0}\right)=y_{0}^{\prime}
\end{gathered}
$$

Thm 3.2.2: If ϕ_{1} and ϕ_{2} are two solutions to a homogeneous linear differential equation, then $c_{1} \phi_{1}+c_{2} \phi_{2}$ is also a solution to this linear differential equation.

Proof of thm 3.2.2:

Since $y(t)=\phi_{i}(t)$ is a solution to the linear homogeneous differential equation $y^{\prime \prime}+p y^{\prime}+q y=0$ where p and q are functions of t (note this includes the case with constant coefficients), then

Claim: $y(t)=c_{1} \phi_{1}(t)+c_{2} \phi_{2}(t)$ is also a solution to $y^{\prime \prime}+$ $p y^{\prime}+q y=0$

Pf of claim:

Second order differential equation:

Linear equation with constant coefficients:
If the second order differential equation is

$$
\begin{aligned}
& \qquad a y^{\prime \prime}+b y^{\prime}+c y=0 \\
& \text { then } y=e^{r t} \text { is a solution }
\end{aligned}
$$

Need to have two independent solutions.
Solve the following IVPs:
1.) $y^{\prime \prime}-6 y^{\prime}+9 y=0$ $y(0)=1, y^{\prime}(0)=2$
2.) $4 y^{\prime \prime}-y^{\prime}+2 y=0$
$y(0)=3, y^{\prime}(0)=4$
3.) $4 y^{\prime \prime}+4 y^{\prime}+y=0$

$$
y(0)=6, y^{\prime}(0)=7
$$

4.) $2 y^{\prime \prime}-2 y=0$

$$
y(0)=5, y^{\prime}(0)=9
$$

Summary of sections 3.1, 3, 4: Solve linear homogeneous 2nd order DE with constant coefficients.

Solve $a y^{\prime \prime}+b y^{\prime}+c y=0 . \quad$ Educated guess $y=e^{r t}$, then $a r^{2} e^{r t}+b r e^{r t}+c e^{r t}=0$ implies $a r^{2}+b r+c=0$,

Suppose $r=r_{1}, r_{2}$ are solutions to $a r^{2}+b r+c=0$

$$
r_{1}, r_{2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

If $r_{1} \neq r_{2}$, then $b^{2}-4 a c \neq 0$. Hence a general solution is $y=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}$

If $b^{2}-4 a c>0$, general solution is $y=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}$.

If $b^{2}-4 a c<0$, change format to linear combination of real-valued functions instead of complex valued functions by using Euler's formula.
general solution is $y=c_{1} e^{d t} \cos (n t)+c_{2} e^{d t} \sin (n t)$ where $r=d \pm i n$

If $b^{2}-4 a c=0, r_{1}=r_{2}$, so need 2nd (independent) solution: $t e^{r_{1} t}$

Hence general solution is $y=c_{1} e^{r_{1} t}+c_{2} t e^{r_{1} t}$.
Initial value problem: use $y\left(t_{0}\right)=y_{0}, y^{\prime}\left(t_{0}\right)=y_{0}^{\prime}$ to solve for c_{1}, c_{2} to find unique solution.

Derivation of general solutions:

If $b^{2}-4 a c>0$ we guessed $e^{r t}$ is a solution and noted that any linear combination of solutions is a solution to a homogeneous linear differential equation.

Section 3.3: If $b^{2}-4 a c<0,:$
Changed format of $y=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}$ to linear combination of real-valued functions instead of complex valued functions by using Euler's formula:

$$
e^{i t}=\cos (t)+i \sin (t)
$$

Hence $e^{(d+i n) t}=e^{d t} e^{i n t}=e^{d t}[\cos (n t)+i \sin (n t)]$
Let $r_{1}=d+i n, r_{2}=d-i n$
$y=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}$
$=c_{1} e^{d t}[\cos (n t)+i \sin (n t)]+c_{2} e^{d t}[\cos (-n t)+i \sin (-n t)]$
$=c_{1} e^{d t} \cos (n t)+i c_{1} e^{d t} \sin (n t)+c_{2} e^{d t} \cos (n t)-i c_{2} e^{d t} \sin (n t)$
$=\left(c_{1}+c_{2}\right) e^{d t} \cos (n t)+i\left(c_{1}-c_{2}\right) e^{d t} \sin (n t)$
$=k_{1} e^{d t} \cos (n t)+k_{2} e^{d t} \sin (n t)$

Section 3.4: If $b^{2}-4 a c=0$, then $r_{1}=r_{2}$.
Hence one solution is $y=e^{r_{1} t}$ Need second solution.
If $y=e^{r t}$ is a solution, $y=c e^{r t}$ is a solution.
How about $y=v(t) e^{r t}$?
$y^{\prime}=v^{\prime}(t) e^{r t}+v(t) r e^{r t}$
$\begin{aligned} y^{\prime \prime} & =v^{\prime \prime}(t) e^{r t}+v^{\prime}(t) r e^{r t}+v^{\prime}(t) r e^{r t}+v(t) r^{2} e^{r t} \\ & =v^{\prime \prime}(t) e^{r t}+2 v^{\prime}(t) r e^{r t}+v(t) r^{2} e^{r t}\end{aligned}$
$a y^{\prime \prime}+b y^{\prime}+c y=0$
$a\left(v^{\prime \prime} e^{r t}+2 v^{\prime} r e^{r t}+v r^{2} e^{r t}\right)+b\left(v^{\prime} e^{r t}+v r e^{r t}\right)+c v e^{r t}=0$
$a\left(v^{\prime \prime}(t)+2 v^{\prime}(t) r+v(t) r^{2}\right)+b\left(v^{\prime}(t)+v(t) r\right)+c v(t)=0$
$a v^{\prime \prime}(t)+2 a v^{\prime}(t) r+a v(t) r^{2}+b v^{\prime}(t)+b v(t) r+c v(t)=0$
$a v^{\prime \prime}(t)+(2 a r+b) v^{\prime}(t)+\left(a r^{2}+b r+c\right) v(t)=0$
$a v^{\prime \prime}(t)+\left(2 a\left(\frac{-b}{2 a}\right)+b\right) v^{\prime}(t)+0=0$
since $a r^{2}+b r+c=0$ and $r=\frac{-b}{2 a}$
$a v^{\prime \prime}(t)+(-b+b) v^{\prime}(t)=0 . \quad$ Thus $a v^{\prime \prime}(t)=0$.
Hence $v^{\prime \prime}(t)=0$ and $v^{\prime}(t)=k_{1}$ and $v(t)=k_{1} t+k_{2}$
Hence $v(t) e^{r_{1} t}=\left(k_{1} t+k_{2}\right) e^{r_{1} t}$ is a soln
Thus $t e^{r_{1} t}$ is a nice second solution.
Hence general solution is $y=c_{1} e^{r_{1} t}+c_{2} t e^{r_{1} t}$

Solve: $y^{\prime \prime}+y=0, y(0)=-1, y^{\prime}(0)=-3$
$r^{2}+1=0$ implies $r^{2}=-1$. Thus $r= \pm i$.
Since $r=0 \pm 1 i, y=k_{1} \cos (t)+k_{2} \sin (t)$.
Then $y^{\prime}=-k_{1} \sin (t)+k_{2} \cos (t)$
$y(0)=-1:-1=k_{1} \cos (0)+k_{2} \sin (0)$ implies $-1=k_{1}$
$y^{\prime}(0)=-3:-3=-k_{1} \sin (0)+k_{2} \cos (0)$ implies $-3=k_{2}$
Thus IVP solution: $y=-\cos (t)-3 \sin (t)$

When does the following IVP have unique sol'n:
IVP: $a y^{\prime \prime}+b y^{\prime}+c y=0, y\left(t_{0}\right)=y_{0}, y^{\prime}\left(t_{0}\right)=y_{1}$.
Suppose $y=c_{1} \phi_{1}(t)+c_{2} \phi_{2}(t)$ is a solution to $a y^{\prime \prime}+b y^{\prime}+c y=0$. Then $y^{\prime}=c_{1} \phi_{1}^{\prime}(t)+c_{2} \phi_{2}^{\prime}(t)$
$y\left(t_{0}\right)=y_{0}: y_{0}=c_{1} \phi_{1}\left(t_{0}\right)+c_{2} \phi_{2}\left(t_{0}\right)$
$y^{\prime}\left(t_{0}\right)=y_{1}: y_{1}=c_{1} \phi_{1}^{\prime}\left(t_{0}\right)+c_{2} \phi_{2}^{\prime}\left(t_{0}\right)$
To find IVP solution, need to solve above system of two equations for the unknowns c_{1} and c_{2}.

Note the IVP has a unique solution if and only if the above system of two equations has a unique solution for c_{1} and c_{2}.

Note that in these equations c_{1} and c_{2} are the unknowns and $y_{0}, \phi_{1}\left(t_{0}\right), \phi_{2}\left(t_{0}\right), y_{1}, \phi_{1}^{\prime}\left(t_{0}\right), \phi_{2}^{\prime}\left(t_{0}\right)$ are the constants. We can translate this linear system of equations into matrix form:

$$
\begin{aligned}
& c_{1} \phi_{1}\left(t_{0}\right)+c_{2} \phi_{2}\left(t_{0}\right)=y_{0} \\
& c_{1} \phi_{1}^{\prime}\left(t_{0}\right)+c_{2} \phi_{2}^{\prime}\left(t_{0}\right)=y_{1}
\end{aligned} \Rightarrow\left[\begin{array}{ll}
\phi_{1}\left(t_{0}\right) & \phi_{2}\left(t_{0}\right) \\
\phi_{1}^{\prime}\left(t_{0}\right) & \phi_{2}^{\prime}\left(t_{0}\right)
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
y_{0} \\
y_{1}
\end{array}\right]
$$

Note this equation has a unique solution if and only if

$$
\operatorname{det}\left[\begin{array}{ll}
\phi_{1}\left(t_{0}\right) & \phi_{2}\left(t_{0}\right) \\
\phi_{1}^{\prime}\left(t_{0}\right) & \phi_{2}^{\prime}\left(t_{0}\right)
\end{array}\right]=\left|\begin{array}{cc}
\phi_{1} & \phi_{2} \\
\phi_{1}^{\prime} & \phi_{2}^{\prime}
\end{array}\right|=\phi_{1} \phi_{2}^{\prime}-\phi_{1}^{\prime} \phi_{2} \neq 0
$$

Definition: The Wronskian of two differential functions, ϕ_{1} and ϕ_{2} is

$$
W\left(\phi_{1}, \phi_{2}\right)=\phi_{1} \phi_{2}^{\prime}-\phi_{1}^{\prime} \phi_{2}=\left|\begin{array}{ll}
\phi_{1} & \phi_{2} \\
\phi_{1}^{\prime} & \phi_{2}^{\prime}
\end{array}\right|
$$

Examples:
1.) $\mathrm{W}(\cos (t), \sin (t))=\left|\begin{array}{cc}\cos (t) & \sin (t) \\ -\sin (t) & \cos (t)\end{array}\right|$

$$
=\cos ^{2}(t)+\sin ^{2}(t)=1>0 .
$$

2.) $\mathrm{W}\left(e^{d t} \cos (n t), e^{d t} \sin (n t)\right)=$

$$
e^{d t} \cos (n t) \quad e^{d t} \sin (n t)
$$

$$
d e^{d t} \cos (n t)-n e^{d t} \sin (n t) \quad d e^{d t} \sin (n t)+n e^{d t} \cos (n t)
$$

$=e^{d t} \cos (n t)\left(d e^{d t} \sin (n t)+n e^{d t} \cos (n t)\right)-e^{d t} \sin (n t)\left(d e^{d t} \cos (n t)-n e^{d t} \sin (n t\right.$ $=e^{2 d t}[\cos (n t)(d \sin (n t)+n \cos (n t))-\sin (n t)(d \cos (n t)-n \sin (n t))]$
$\left.=e^{2 d t}\left[d \cos (n t) \sin (n t)+n \cos ^{2}(n t)-d \sin (n t) \cos (n t)+n \sin ^{2}(n t)\right]\right)$
$=e^{2 d t}\left[n \cos ^{2}(n t)+n \sin ^{2}(n t)\right]$
$=n e^{2 d t}\left[\cos ^{2}(n t)+\sin ^{2}(n t)\right]=n e^{2 d t}>0$ for all t.

Definition: The Wronskian of two differential functions, f and g is

$$
W(f, g)=f g^{\prime}-f^{\prime} g=\left|\begin{array}{cc}
f & g \\
f^{\prime} & g^{\prime}
\end{array}\right|
$$

Thm 3.2.3: Suppose that ϕ_{1} and ϕ_{2} are two solutions to $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$. If $W\left(\phi_{1}, \phi_{2}\right)\left(t_{0}\right)=\phi_{1}\left(t_{0}\right) \phi_{2}^{\prime}\left(t_{0}\right)-\phi_{1}^{\prime}\left(t_{0}\right) \phi_{2}\left(t_{0}\right) \neq 0$, then
there is a unique choice of constants c_{1} and c_{2} such that $c_{1} \phi_{1}+c_{2} \phi_{2}$ satisfies this homogeneous linear differential equation and initial conditions, $y\left(t_{0}\right)=y_{0}, y^{\prime}\left(t_{0}\right)=y_{0}^{\prime}$.

Thm 3.2.4: Given the hypothesis of thm 3.2.1, suppose that ϕ_{1} and ϕ_{2} are two solutions to

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 .
$$

If $W\left(\phi_{1}, \phi_{2}\right)\left(t_{0}\right) \neq 0$, for some $t_{0} \in(a, b)$, then any solution to this homogeneous linear differential equation can be written as $y=c_{1} \phi_{1}+c_{2} \phi_{2}$ for some c_{1} and c_{2}.

Defn If ϕ_{1} and ϕ_{2} satisfy the conditions in thm 3.2.4, then ϕ_{1} and ϕ_{2} form a fundamental set of solutions to $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$.

Thm 3.2.5: Given any second order homogeneous linear differential equation, there exist a pair of functions which form a fundamental set of solutions.

3.3: Linear Independence and the Wronskian

Defn: f and g are linearly dependent if there exists constants c_{1}, c_{2} such that $c_{1} \neq 0$ or $c_{2} \neq 0$ and

$$
c_{1} f(t)+c_{2} g(t)=0 \text { for all } t \in(a, b)
$$

Thm 3.3.1: If $f:(a, b) \rightarrow R$ and $g(a, b) \rightarrow R$ are differentiable functions on (a, b) and if $W(f, g)\left(t_{0}\right) \neq 0$ for some $t_{0} \in(a, b)$, then f and g are linearly independent on (a, b). Moreover, if f and g are linearly dependent on (a, b), then $W(f, g)(t)=0$ for all $t \in(a, b)$

If $c_{1} f(t)+c_{2} g(t)=0$ for all t, then $c_{1} f^{\prime}(t)+c_{2} g^{\prime}(t)=0$

Solve the following linear system of equations for c_{1}, c_{2}

$$
\begin{aligned}
& c_{1} f\left(t_{0}\right)+c_{2} g\left(t_{0}\right)=0 \\
& c_{1} f^{\prime}\left(t_{0}\right)+c_{2} g^{\prime}\left(t_{0}\right)=0 \\
& {\left[\begin{array}{cc}
f\left(t_{0}\right) & g\left(t_{0}\right) \\
f^{\prime}\left(t_{0}\right) & g^{\prime}\left(t_{0}\right)
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]}
\end{aligned}
$$

Thm: Suppose $c_{1} \phi_{1}(t)+c_{2} \phi_{2}(t)$ is a general solution to

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

If ψ is a solution to

$$
a y^{\prime \prime}+b y^{\prime}+c y=g(t)[*],
$$

Then $\psi+c_{1} \phi_{1}(t)+c_{2} \phi_{2}(t)$ is also a solution to [*].
Moreover if γ is also a solution to [*], then there exist constants c_{1}, c_{2} such that

$$
\gamma=\psi+c_{1} \phi_{1}(t)+c_{2} \phi_{2}(t)
$$

Or in other words, $\psi+c_{1} \phi_{1}(t)+c_{2} \phi_{2}(t)$ is a general solution to [*].

Proof:
Define $L(f)=a f^{\prime \prime}+b f^{\prime}+c f$.
Recall L is a linear function.
Let $h=c_{1} \phi_{1}(t)+c_{2} \phi_{2}(t)$. Since h is a solution to the differential equation, $a y^{\prime \prime}+b y^{\prime}+c y=0$,

Since ψ is a solution to $a y^{\prime \prime}+b y^{\prime}+c y=g(t)$,

We will now show that $\psi+c_{1} \phi_{1}(t)+c_{2} \phi_{2}(t)=\psi+h$ is also a solution to [*].

Since γ a solution to $a y^{\prime \prime}+b y^{\prime}+c y=g(t)$,

We will first show that $\gamma-\psi$ is a solution to the differential equation $a y^{\prime \prime}+b y^{\prime}+c y=0$.

Since $\gamma-\psi$ is a solution to $a y^{\prime \prime}+b y^{\prime}+c y=0$ and $c_{1} \phi_{1}(t)+c_{2} \phi_{2}(t)$ is a general solution to

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

there exist constants c_{1}, c_{2} such that

$$
\gamma-\psi=
$$

Thus $\gamma=\psi+c_{1} \phi_{1}(t)+c_{2} \phi_{2}(t)$.

Thm:

Suppose f_{1} is a a solution to $a y^{\prime \prime}+b y^{\prime}+c y=g_{1}(t)$ and f_{2} is a a solution to $a y^{\prime \prime}+b y^{\prime}+c y=g_{2}(t)$, then $f_{1}+f_{2}$ is a solution to $a y^{\prime \prime}+b y^{\prime}+c y=g_{1}(t)+g_{2}(t)$

Proof: Let $L(f)=a f^{\prime \prime}+b f^{\prime}+c f$.
Since f_{1} is a solution to $a y^{\prime \prime}+b y^{\prime}+c y=g_{1}(t)$,

Since f_{2} is a solution to $a y^{\prime \prime}+b y^{\prime}+c y=g_{2}(t)$,

We will now show that $f_{1}+f_{2}$ is a solution to $a y^{\prime \prime}+b y^{\prime}+c y=g_{1}(t)+g_{2}(t)$.

Sidenote: The proofs above work even if a, b, c are functions of t instead of constants.

Examples: Find a suitable form for ψ for the following differential equations:
1.) $y^{\prime \prime}-4 y^{\prime}-5 y=4 e^{2 t}$
2.) $y^{\prime \prime}-4 y^{\prime}-5 y=t^{2}-2 t+1$
3.) $y^{\prime \prime}-4 y^{\prime}-5 y=4 \sin (3 t)$
4.) $y^{\prime \prime}-5 y=4 \sin (3 t)$
5.) $y^{\prime \prime}-4 y^{\prime}=t^{2}-2 t+1$
6.) $y^{\prime \prime}-4 y^{\prime}-5 y=4\left(t^{2}-2 t-1\right) e^{2 t}$
7.) $y^{\prime \prime}-4 y^{\prime}-5 y=4 \sin (3 t) e^{2 t}$
8.) $y^{\prime \prime}-4 y^{\prime}-5 y=4\left(t^{2}-2 t-1\right) \sin (3 t) e^{2 t}$
9.) $y^{\prime \prime}-4 y^{\prime}-5 y=4 \sin (3 t)+4 \sin (3 t) e^{2 t}$

$$
\text { 10.) } \begin{aligned}
y^{\prime \prime} & -4 y^{\prime}-5 y \\
& =4 \sin (3 t) e^{2 t}+4\left(t^{2}-2 t-1\right) e^{2 t}+t^{2}-2 t-1
\end{aligned}
$$

11.) $y^{\prime \prime}-4 y^{\prime}-5 y=4 \sin (3 t)+5 \cos (3 t)$
12.) $y^{\prime \prime}-4 y^{\prime}-5 y=4 e^{-t}$

To solve $a y^{\prime \prime}+b y^{\prime}+c y=g_{1}(t)+g_{2}(t)+\ldots g_{n}(t)\left[{ }^{* *}\right]$
1.) Find the general solution to $a y^{\prime \prime}+b y^{\prime}+c y=0$:

$$
c_{1} \phi_{1}+c_{2} \phi_{2}
$$

2.) For each g_{i}, find a solution to $a y^{\prime \prime}+b y^{\prime}+c y=g_{i}$:

$$
\psi_{i}
$$

This includes plugging guessed solution ψ_{i} into $a y^{\prime \prime}+b y^{\prime}+c y=g_{i}$.

The general solution to [**] is

$$
c_{1} \phi_{1}+c_{2} \phi_{2}+\psi_{1}+\psi_{2}+\ldots \psi_{n}
$$

3.) If initial value problem:

Once general solution is known, can solve initial value problem (i.e., use initial conditions to find c_{1}, c_{2}).

Solve $y^{\prime \prime}-4 y^{\prime}-5 y=4 \sin (3 t), \quad y(0)=6, y^{\prime}(0)=7$.
1.) First solve homogeneous equation:

Find the general solution to $y^{\prime \prime}-4 y^{\prime}-5 y=0$:
Guess $y=e^{r t}$ for HOMOGENEOUS equation:
$y^{\prime}=r e^{r t}, y^{\prime}=r^{2} e^{r t}$
$y^{\prime \prime}-4 y^{\prime}-5 y=0$
$r^{2} e^{r t}-4 r e^{r t}-5 e^{r t}=0$
$e^{r t}\left(r^{2}-4 r-5\right)=0$
$e^{r t} \neq 0$, thus can divide both sides by $e^{r t}$:

$$
r^{2}-4 r-5=0
$$

$(r+1)(r-5)=0$. Thus $r=-1,5$.
Thus $y=e^{-t}$ and $y=e^{5 t}$ are both solutions to LINEAR HOMOGENEOUS equation.

Thus the general solution to the 2nd order LINEAR HOMOGENEOUS equation is

$$
y=c_{1} e^{-t}+c_{2} e^{5 t}
$$

2.) Find one solution to non-homogeneous eq'n:

Find a solution to $a y^{\prime \prime}+b y^{\prime}+c y=4 \sin (3 t)$:
Guess $y=A \sin (3 t)+B \cos (3 t)$

$$
\begin{aligned}
& y^{\prime}=3 A \cos (3 t)-3 B \sin (3 t) \\
& y^{\prime \prime}=-9 A \sin (3 t)-9 B \cos (3 t)
\end{aligned}
$$

$y^{\prime \prime}-4 y^{\prime}-5 y=4 \sin (3 t)$

$-9 A \sin (3 t)$	-	$9 B \cos (3 t)$
$12 B \sin (3 t)$	-	$12 A \cos (3 t)$
$-5 A \sin (3 t)$	-	$5 \cos (3 t)$

$(12 B-14 A) \sin (3 t)-(-14 B-12 A) \cos (3 t)=4 \sin (3 t)$
Since $\{\sin (3 t), \cos (3 t)\}$ is a linearly independent set:
$12 B-14 A=4$ and $-14 B-12 A=0$
Thus $A=-\frac{14}{12} B=-\frac{7}{6} B$ and
$12 B-14\left(-\frac{7}{6} B\right)=12 B+7\left(\frac{7}{3} B\right)=\frac{36+49}{3} B=\frac{85}{3} B=4$
Thus $B=4\left(\frac{3}{85}\right)=\frac{12}{85} \quad$ and $\quad A=-\frac{7}{6} B=-\frac{7}{6}\left(\frac{12}{85}\right)=-\frac{14}{85}$
Thus $y=\left(-\frac{14}{85}\right) \sin (3 t)+\frac{12}{85} \cos (3 t)$ is one solution to the nonhomogeneous equation.

Thus the general solution to the 2nd order linear nonhomogeneous equation is

$$
y=c_{1} e^{-t}+c_{2} e^{5 t}-\left(\frac{14}{85}\right) \sin (3 t)+\frac{12}{85} \cos (3 t)
$$

3.) If initial value problem:

Once general solution is known, can solve initial value problem (i.e., use initial conditions to find c_{1}, c_{2}).

NOTE: you must know the GENERAL solution to the ODE BEFORE you can solve for the initial values. The homogeneous solution and the one nonhomogeneous solution found in steps 1 and 2 above do NOT need to separately satisfy the initial values.

Solve $y^{\prime \prime}-4 y^{\prime}-5 y=4 \sin (3 t), \quad y(0)=6, y^{\prime}(0)=7$.
General solution: $y=c_{1} e^{-t}+c_{2} e^{5 t}-\left(\frac{14}{85}\right) \sin (3 t)+\frac{12}{85} \cos (3 t)$
Thus $y^{\prime}=-c_{1} e^{-t}+5 c_{2} e^{5 t}-\left(\frac{42}{85}\right) \cos (3 t)-\frac{36}{85} \sin (3 t)$

$$
\begin{array}{lll}
y(0)=6: & 6=c_{1}+c_{2}+\frac{12}{85} & \frac{498}{85}=c_{1}+c_{2} \\
y^{\prime}(0)=7: & 7=-c_{1}+5 c_{2}-\frac{42}{85} & \frac{637}{85}=-c_{1}+5 c_{2}
\end{array}
$$

$$
6 c_{2}=\frac{498+637}{85}=\frac{1135}{85}=\frac{227}{17} . \text { Thus } c_{2}=\frac{227}{102} .
$$

$$
c_{1}=\frac{498}{85}-c_{2}=\frac{498}{85}-\frac{227}{102}=\frac{2988-1135}{510}=\frac{1853}{510}=\frac{109}{30}
$$

Thus $y=\left(\frac{109}{30}\right) e^{-t}+\left(\frac{227}{102}\right) e^{5 t}-\left(\frac{14}{85}\right) \sin (3 t)+\frac{12}{85} \cos (3 t)$.
Partial Check: $y(0)=\left(\frac{109}{30}\right)+\left(\frac{227}{102}\right)+\frac{12}{85}=6$.

$$
y^{\prime}(0)=-\frac{109}{30}+5\left(\frac{227}{102}\right)-\frac{42}{85}=7 .
$$

$$
\left(e^{-t}\right)^{\prime \prime}-4\left(e^{-t}\right)^{\prime}-5\left(e^{-t}\right)=0 \text { and }\left(e^{5 t}\right)^{\prime \prime}-4\left(e^{5 t}\right)^{\prime}-5\left(e^{5 t}\right)=0
$$

