
Summary of sections 3.1, 3, 4: Solve linear homogeneous
2nd order DE with constant coefficients.

Solve ay′′ + by′ + cy = 0. Educated guess y = ert, then

ar2ert + brert + cert = 0 implies ar2 + br + c = 0,

Suppose r = r1, r2 are solutions to ar2 + br + c = 0

r1, r2 = −b±
√
b2−4ac
2a

If r1 ̸= r2, then b
2 − 4ac ̸= 0. Hence a general solution is

y = c1e
r1t + c2e

r2t

If b2 − 4ac > 0, general solution is y = c1e
r1t + c2e

r2t.

If b2 − 4ac < 0, change format to linear combination of
real-valued functions instead of complex valued functions
by using Euler’s formula.

general solution is y = c1e
dtcos(nt) + c2e

dtsin(nt) where
r = d± in

If b2 − 4ac = 0, r1 = r2, so need 2nd (independent)
solution: ter1t

Hence general solution is y = c1e
r1t + c2te

r1t.

Initial value problem: use y(t0) = y0, y
′(t0) = y′0 to solve

for c1, c2 to find unique solution.
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Examples:

Ex 1: Solve y′′ − 3y′ − 4y = 0, y(0) = 1, y′(0) = 2.

If y = ert, then y′ = rert and y′′ = r2ert.

r2ert − 3rert − 4ert = 0

r2−3r−4 = 0 implies (r−4)(r+1) = 0. Thus r = 4,−1

Hence general solution is y = c1e
4t + c2e

−t

Solution to IVP:

Need to solve for 2 unknowns, c1 & c2; thus need 2 eqns:

y = c1e
4t + c2e

−t, y(0) = 1 implies 1 = c1 + c2

y′ = 4c1e
4t − c2e

−t, y′(0) = 2 implies 2 = 4c1 − c2

Thus 3 = 5c1 & hence c1 = 3
5 and c2 = 1−c1 = 1− 3

5 = 2
5

Thus IVP soln: y = 3
5e

4t + 2
5e

−t

Ex 2: Solve y′′ − 3y′ + 4y = 0.

y = ert implies r2 − 3r + 4 = 0 and hence

r =
3±

√
(−3)2−4(1)(4)

2 = 3
2 ±

√
9−16
2 = 3

2 ± i
√
7
2

Hence general sol’n is y = c1e
3
2 tcos(

√
7
2 t) + c2e

3
2 tsin(

√
7
2 t)

Ex 3: y′′−6y′+9y = 0 implies r2−6r+9 = (r−3)2 = 0

Repeated root, r = 3 implies
general solution is y = c1e

3t + c2te
3t
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So why did we guess y = ert?

Goal: Solve linear homogeneous 2nd order DE with con-
stant coefficients,

ay′′ + by′ + cy = 0 where a, b, c are constants

Standard mathematical technique: make up simpler prob-
lems and see if you can generalize to the problem of inter-
est.

Ex: linear homogeneous 1rst order DE: y′ + 2y = 0

integrating factor u(t) = e
∫

2dt = e2t

y′e2t + 2e2ty = 0

(e2ty)′ = 0. Thus
∫
(e2ty)′dt =

∫
0dt. Hence e2ty = C

So y = Ce−2t.

Thus exponential function could also be a solution to a
linear homogeneous 2nd order DE

Ex: Simple linear homog 2nd order DE y′′ + 2y′ = 0.

Let v = y′, then v′ = y′′

y′′ + 2y′ = 0 implies v′ + 2v = 0 implies v = e2t.

Thus v = y′ = dy
dt = Ce−2t. Hence dy = Ce−2tdt and

y = c1e
−2t + c2.
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y = c1e
−2t + c2.

Note 2 integrations give us 2 constants.

Note also that the general solution is a linear combination
of two solutions:

Let c1 = 1, c2 = 0, then we see, y(t) = e−2t is a solution.

Let c1 = 0, c2 = 1, then we see, y(t) = 1 is a solution.

The general solution is a linear combination of two sol-
utions:

y = c1e
−2t + c2(1).

Recall: you have seen this before:

Solve linear homogeneous matrix equation Ay = 0.

The general solution is a linear combination of linearly
independent vectors that span the solution space:

y = c1v1 + ...cnvn

FYI: You could see this again:

Math 4050: Solve homogeneous linear recurrance relation
xn − xn−1 − xn−2 = 0 where x1 = 1 and x2 = 1.

Fibonacci sequence: xn = xn−1 + xn−2

1, 1, 2, 3, 5, 8, 13, 21, ...

Note xn = 1√
5
( 1+

√
5

2 )n − 1√
5
( 1−

√
5

2 )n
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Proof: xn = xn−1 + xn−2 implies xn − xn−1 − xn−2 = 0

Suppose xn = rn. Then xn−1 = rn−1 and xn−2 = rn−2

Then 0 = xn − xn−1 − xn−2 = rn − rn−1 − rn−2

Thus rn−2(r2 − r − 1) = 0.

Thus either r = 0 or r =
1±

√
1−4(1)(−1)

2 = 1±
√
5

2

Thus xn = 0, xn =
(

1+
√
5

2

)n

and fn =
(

1−
√
5

2

)n

are 3 different sequences that satisfy the

homog linear recurrence relation: xn − xn−1 − xn−2 = 0.

Hence xn = c1

(
1+

√
5

2

)n

+ c2

(
1−

√
5

2

)n

also satisfies this

homogeneous linear recurrence relation.

Suppose the initial conditions are x1 = 1 and x2 = 1

Then for n = 1: x1 = 1 implies c1 + c2 = 1

For n = 2: x2 = 1 implies c1

(
1+

√
5

2

)
+ c2

(
1−

√
5

2

)
= 1

We can solve this for c1 and c2 to determine that

xn = 1√
5
( 1+

√
5

2 )n − 1√
5
( 1−

√
5

2 )n

5



Existence and Uniqueness for LINEAR DEs.

Homogeneous:

y(n) + p1(t)y
(n−1) + ...pn−1(t)y

′ + pn(t)y = 0

Non-homogeneous: g(t) ̸= 0

y(n) + p1(t)y
(n−1) + ...pn−1(t)y

′ + pn(t)y = g(t)

1st order LINEAR differential equation:

Thm 2.4.1: If p : (a, b) → R and g : (a, b) → R are
continuous and a < t0 < b, then there exists a unique
function y = ϕ(t), ϕ : (a, b) → R that satisfies the

IVP: y′ + p(t)y = g(t), y(t0) = y0

Thm: If y = ϕ1(t) is a solution to homogeneous equation,
y′ + p(t)y = 0, then y = cϕ1(t) is the general solution to
this equation.

If in addition y = ψ(t) is a solution to non-homogeneous
equation, y′ + p(t)y = g(t), then y = cϕ1(t) + ψ(t) is the
general solution to this equation.

Partial proof: y = ϕ1(t) is a solution to y′ + p(t)y = 0
implies

Thus y = cϕ1(t) is a solution to y′ + p(t)y = 0 since

y = ψ(t) is a solution to y′ + p(t)y = g(t) implies

Thus y = cϕ1(t) + ψ(t) is a solution to y′ + p(t)y = g(t)
since
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2nd order LINEAR differential equation:

Thm 3.2.1: If p : (a, b) → R, q : (a, b) → R, and g :
(a, b) → R are continuous and a < t0 < b, then there
exists a unique function y = ϕ(t), ϕ : (a, b) → R that
satisfies the initial value problem

y′′ + p(t)y′ + q(t)y = g(t),
y(t0) = y0,
y′(t0) = y′0

Thm 3.2.2: If ϕ1 and ϕ2 are two solutions to a homogeneous
linear differential equation, then c1ϕ1+ c2ϕ2 is also a sol-
ution to this linear differential equation.

Proof of thm 3.2.2:

Since y(t) = ϕi(t) is a solution to the linear homogeneous
differential equation y′′ + py′ + qy = 0 where p and q are
functions of t (note this includes the case with constant
coefficients), then

Claim: y(t) = c1ϕ1(t) + c2ϕ2(t) is also a solution to y′′ +
py′ + qy = 0

Pf of claim:
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Second order differential equation:

Linear equation with constant coefficients:
If the second order differential equation is

ay′′ + by′ + cy = 0,

then y = ert is a solution

Need to have two independent solutions.

Solve the following IVPs:

1.) y′′ − 6y′ + 9y = 0 y(0) = 1, y′(0) = 2

2.) 4y′′ − y′ + 2y = 0 y(0) = 3, y′(0) = 4

3.) 4y′′ + 4y′ + y = 0 y(0) = 6, y′(0) = 7

4.) 2y′′ − 2y = 0 y(0) = 5, y′(0) = 9
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Summary of sections 3.1, 3, 4: Solve linear homogeneous
2nd order DE with constant coefficients.

Solve ay′′ + by′ + cy = 0. Educated guess y = ert, then

ar2ert + brert + cert = 0 implies ar2 + br + c = 0,

Suppose r = r1, r2 are solutions to ar2 + br + c = 0

r1, r2 = −b±
√
b2−4ac
2a

If r1 ̸= r2, then b
2 − 4ac ̸= 0. Hence a general solution is

y = c1e
r1t + c2e

r2t

If b2 − 4ac > 0, general solution is y = c1e
r1t + c2e

r2t.

If b2 − 4ac < 0, change format to linear combination of
real-valued functions instead of complex valued functions
by using Euler’s formula.

general solution is y = c1e
dtcos(nt) + c2e

dtsin(nt) where
r = d± in

If b2 − 4ac = 0, r1 = r2, so need 2nd (independent)
solution: ter1t

Hence general solution is y = c1e
r1t + c2te

r1t.

Initial value problem: use y(t0) = y0, y
′(t0) = y′0 to solve

for c1, c2 to find unique solution.
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Derivation of general solutions:

If b2 − 4ac > 0 we guessed ert is a solution and noted
that any linear combination of solutions is a solution to
a homogeneous linear differential equation.

Section 3.3: If b2 − 4ac < 0, :

Changed format of y = c1e
r1t + c2e

r2t to linear combi-
nation of real-valued functions instead of complex valued
functions by using Euler’s formula:

eit = cos(t) + isin(t)

Hence e(d+in)t = edteint = edt[cos(nt) + isin(nt)]

Let r1 = d+ in, r2 = d− in

y = c1e
r1t + c2e

r2t

= c1e
dt[cos(nt) + isin(nt)] + c2e

dt[cos(−nt) + isin(−nt)]
= c1e

dtcos(nt)+ic1e
dtsin(nt)+c2e

dtcos(nt)−ic2edtsin(nt)
=(c1 + c2)e

dtcos(nt) + i(c1 − c2)e
dtsin(nt)

= k1e
dtcos(nt) + k2e

dtsin(nt)
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Section 3.4: If b2 − 4ac = 0, then r1 = r2.
Hence one solution is y = er1t Need second solution.

If y = ert is a solution, y = cert is a solution.

How about y = v(t)ert?

y′ = v′(t)ert + v(t)rert

y′′ = v′′(t)ert + v′(t)rert + v′(t)rert + v(t)r2ert

= v′′(t)ert + 2v′(t)rert + v(t)r2ert

ay′′ + by′ + cy = 0

a(v′′ert + 2v′rert + vr2ert) + b(v′ert + vrert) + cvert = 0

a(v′′(t) + 2v′(t)r + v(t)r2) + b(v′(t) + v(t)r) + cv(t) = 0

av′′(t) + 2av′(t)r + av(t)r2 + bv′(t) + bv(t)r + cv(t) = 0

av′′(t) + (2ar + b)v′(t) + (ar2 + br + c)v(t) = 0

av′′(t) + (2a(−b
2a ) + b)v′(t) + 0 = 0

since ar2 + br + c = 0 and r = −b
2a

av′′(t) + (−b+ b)v′(t) = 0. Thus av′′(t) = 0.

Hence v′′(t) = 0 and v′(t) = k1 and v(t) = k1t+ k2

Hence v(t)er1t = (k1t+ k2)e
r1t is a soln

Thus ter1t is a nice second solution.

Hence general solution is y = c1e
r1t + c2te

r1t
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Solve: y′′ + y = 0, y(0) = −1, y′(0) = −3

r2 + 1 = 0 implies r2 = −1. Thus r = ±i.

Since r = 0± 1i, y = k1cos(t) + k2sin(t).

Then y′ = −k1sin(t) + k2cos(t)

y(0) = −1: −1 = k1cos(0) + k2sin(0) implies −1 = k1

y′(0) = −3: −3 = −k1sin(0) + k2cos(0) implies −3 = k2

Thus IVP solution: y = −cos(t)− 3sin(t)

When does the following IVP have unique sol’n:

IVP: ay′′ + by′ + cy = 0, y(t0) = y0, y
′(t0) = y1.

Suppose y = c1ϕ1(t) + c2ϕ2(t) is a solution to

ay′′ + by′ + cy = 0. Then y′ = c1ϕ
′
1(t) + c2ϕ

′
2(t)

y(t0) = y0: y0 = c1ϕ1(t0) + c2ϕ2(t0)

y′(t0) = y1: y1 = c1ϕ
′
1(t0) + c2ϕ

′
2(t0)

To find IVP solution, need to solve above system of two
equations for the unknowns c1 and c2.

Note the IVP has a unique solution if and only if the
above system of two equations has a unique solution for
c1 and c2.
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Note that in these equations c1 and c2 are the unknowns and
y0, ϕ1(t0), ϕ2(t0), y1, ϕ

′
1(t0), ϕ

′
2(t0) are the constants. We can

translate this linear system of equations into matrix form:

c1ϕ1(t0) + c2ϕ2(t0) = y0
c1ϕ

′
1(t0) + c2ϕ

′
2(t0) = y1

⇒
[
ϕ1(t0) ϕ2(t0)
ϕ′1(t0) ϕ′2(t0)

] [
c1
c2

]
=

[
y0
y1

]
Note this equation has a unique solution if and only if

det

[
ϕ1(t0) ϕ2(t0)
ϕ′1(t0) ϕ′2(t0)

]
=

∣∣∣∣ϕ1 ϕ2
ϕ′1 ϕ′2

∣∣∣∣ = ϕ1ϕ
′
2 − ϕ′1ϕ2 ̸= 0

Definition: The Wronskian of two differential functions, ϕ1
and ϕ2 is

W (ϕ1, ϕ2) = ϕ1ϕ
′
2 − ϕ′1ϕ2 =

∣∣∣∣ϕ1 ϕ2
ϕ′1 ϕ′2

∣∣∣∣
Examples:

1.) W(cos(t), sin(t)) =

∣∣∣∣ cos(t) sin(t)
−sin(t) cos(t)

∣∣∣∣
= cos2(t) + sin2(t) = 1 > 0.

2.) W(edtcos(nt), edtsin(nt)) =∣∣∣∣ edtcos(nt) edtsin(nt)
dedtcos(nt)− nedtsin(nt) dedtsin(nt) + nedtcos(nt)

∣∣∣∣
=edtcos(nt)(dedtsin(nt)+nedtcos(nt))−edtsin(nt)(dedtcos(nt)−nedtsin(nt))

=e2dt[cos(nt)(dsin(nt)+ncos(nt))−sin(nt)(dcos(nt)−nsin(nt))]

=e2dt[dcos(nt)sin(nt)+ncos2(nt)−dsin(nt)cos(nt)+nsin2(nt)])

= e2dt[ncos2(nt) + nsin2(nt)]

= ne2dt[cos2(nt) + sin2(nt)] = ne2dt > 0 for all t.
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Definition: The Wronskian of two differential funct-
ions, f and g is

W (f, g) = fg′ − f ′g =
∣∣ f g
f ′ g′

∣∣
Thm 3.2.3: Suppose that
ϕ1 and ϕ2 are two solutions to y′′+p(t)y′+q(t)y = 0.
If W (ϕ1, ϕ2)(t0) = ϕ1(t0)ϕ

′
2(t0) − ϕ′1(t0)ϕ2(t0) ̸= 0,

then
there is a unique choice of constants c1 and c2 such that
c1ϕ1+c2ϕ2 satisfies this homogeneous linear differential
equation and initial conditions, y(t0) = y0, y

′(t0) = y′0.

Thm 3.2.4: Given the hypothesis of thm 3.2.1,
suppose that ϕ1 and ϕ2 are two solutions to

y′′ + p(t)y′ + q(t)y = 0.

If W (ϕ1, ϕ2)(t0) ̸= 0, for some t0 ∈ (a, b), then any sol-
ution to this homogeneous linear differential equation
can be written as y = c1ϕ1 + c2ϕ2 for some c1 and c2.

Defn If ϕ1 and ϕ2 satisfy the conditions in thm 3.2.4,
then ϕ1 and ϕ2 form a fundamental set of solutions to
y′′ + p(t)y′ + q(t)y = 0.

Thm 3.2.5: Given any second order homogeneous lin-
ear differential equation, there exist a pair of functions
which form a fundamental set of solutions.
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3.3: Linear Independence and the Wronskian

Defn: f and g are linearly dependent if there exists
constants c1, c2 such that c1 ̸= 0 or c2 ̸= 0 and

c1f(t) + c2g(t) = 0 for all t ∈ (a, b)

Thm 3.3.1: If f : (a, b) → R and g(a, b) → R are
differentiable functions on (a, b) and ifW (f, g)(t0) ̸= 0
for some t0 ∈ (a, b), then f and g are linearly independ-
ent on (a, b). Moreover, if f and g are linearly depend-
ent on (a, b), then W (f, g)(t) = 0 for all t ∈ (a, b)

If c1f(t)+c2g(t) = 0 for all t, then c1f
′(t)+c2g

′(t) = 0

Solve the following linear system of equations for c1, c2

c1f(t0) + c2g(t0) = 0
c1f

′(t0) + c2g
′(t0) = 0[

f(t0) g(t0)
f ′(t0) g′(t0)

] [
c1
c2

]
=

[
0
0

]
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Thm: Suppose c1ϕ1(t) + c2ϕ2(t) is a general solution
to

ay′′ + by′ + cy = 0,

If ψ is a solution to
ay′′ + by′ + cy = g(t) [*],

Then ψ + c1ϕ1(t) + c2ϕ2(t) is also a solution to [*].

Moreover if γ is also a solution to [*], then there exist
constants c1, c2 such that

γ = ψ + c1ϕ1(t) + c2ϕ2(t)

Or in other words, ψ + c1ϕ1(t) + c2ϕ2(t) is a general
solution to [*].

Proof:

Define L(f) = af ′′ + bf ′ + cf .

Recall L is a linear function.

Let h = c1ϕ1(t) + c2ϕ2(t). Since h is a solution to the
differential equation, ay′′ + by′ + cy = 0,

Since ψ is a solution to ay′′ + by′ + cy = g(t),
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We will now show that ψ + c1ϕ1(t) + c2ϕ2(t) = ψ + h
is also a solution to [*].

Since γ a solution to ay′′ + by′ + cy = g(t),

We will first show that γ − ψ is a solution to the
differential equation ay′′ + by′ + cy = 0.

Since γ − ψ is a solution to ay′′ + by′ + cy = 0 and

c1ϕ1(t) + c2ϕ2(t) is a general solution to
ay′′ + by′ + cy = 0,

there exist constants c1, c2 such that

γ − ψ =

Thus γ = ψ + c1ϕ1(t) + c2ϕ2(t).
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Thm:
Suppose f1 is a a solution to ay′′ + by′ + cy = g1(t)
and f2 is a a solution to ay′′ + by′ + cy = g2(t), then
f1 + f2 is a solution to ay′′ + by′ + cy = g1(t) + g2(t)

Proof: Let L(f) = af ′′ + bf ′ + cf .

Since f1 is a solution to ay′′ + by′ + cy = g1(t),

Since f2 is a solution to ay′′ + by′ + cy = g2(t),

We will now show that f1 + f2 is a solution to
ay′′ + by′ + cy = g1(t) + g2(t).

Sidenote: The proofs above work even if a, b, c are fun-
ctions of t instead of constants.
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Examples: Find a suitable form for ψ for the following
differential equations:

1.) y′′ − 4y′ − 5y = 4e2t

2.) y′′ − 4y′ − 5y = t2 − 2t+ 1

3.) y′′ − 4y′ − 5y = 4sin(3t)

4.) y′′ − 5y = 4sin(3t)

5.) y′′ − 4y′ = t2 − 2t+ 1

6.) y′′ − 4y′ − 5y = 4(t2 − 2t− 1)e2t
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7.) y′′ − 4y′ − 5y = 4sin(3t)e2t

8.) y′′ − 4y′ − 5y = 4(t2 − 2t− 1)sin(3t)e2t

9.) y′′ − 4y′ − 5y = 4sin(3t) + 4sin(3t)e2t

10.) y′′ − 4y′ − 5y
= 4sin(3t)e2t + 4(t2 − 2t− 1)e2t + t2 − 2t− 1
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11.) y′′ − 4y′ − 5y = 4sin(3t) + 5cos(3t)

12.) y′′ − 4y′ − 5y = 4e−t

To solve ay′′ + by′ + cy = g1(t) + g2(t) + ...gn(t) [**]

1.) Find the general solution to ay′′ + by′ + cy = 0:
c1ϕ1 + c2ϕ2

2.) For each gi, find a solution to ay′′ + by′ + cy = gi:
ψi

This includes plugging guessed solution ψi into
ay′′ + by′ + cy = gi.

The general solution to [**] is

c1ϕ1 + c2ϕ2 + ψ1 + ψ2 + ...ψn

3.) If initial value problem:

Once general solution is known, can solve initial value
problem (i.e., use initial conditions to find c1, c2).
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Solve y′′ − 4y′ − 5y = 4sin(3t), y(0) = 6, y′(0) = 7.

1.) First solve homogeneous equation:

Find the general solution to y′′ − 4y′ − 5y = 0:

Guess y = ert for HOMOGENEOUS equation:

y′ = rert, y′ = r2ert

y′′ − 4y′ − 5y = 0

r2ert − 4rert − 5ert = 0

ert(r2 − 4r − 5) = 0

ert ̸= 0, thus can divide both sides by ert:

r2 − 4r − 5 = 0

(r + 1)(r − 5) = 0. Thus r = −1, 5.

Thus y = e−t and y = e5t are both solutions to
LINEAR HOMOGENEOUS equation.

Thus the general solution to the 2nd order LINEAR
HOMOGENEOUS equation is

y = c1e
−t + c2e

5t
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2.) Find one solution to non-homogeneous eq’n:

Find a solution to ay′′ + by′ + cy = 4sin(3t):

Guess y = Asin(3t) +Bcos(3t)

y′ = 3Acos(3t)− 3Bsin(3t)

y′′ = −9Asin(3t)− 9Bcos(3t)

y′′ − 4y′ − 5y = 4sin(3t)

−9Asin(3t) − 9Bcos(3t)
12Bsin(3t) − 12Acos(3t)
−5Asin(3t) − 5cos(3t)

(12B − 14A)sin(3t) − (−14B − 12A)cos(3t) = 4sin(3t)

Since {sin(3t), cos(3t)} is a linearly independent set:

12B − 14A = 4 and −14B − 12A = 0

Thus A = − 14
12B = − 7

6B and

12B − 14(− 7
6B) = 12B + 7( 73B) = 36+49

3 B = 85
3 B = 4

Thus B = 4( 3
85 ) =

12
85 and A = − 7

6B = − 7
6 (

12
85 ) = − 14

85

Thus y = (− 14
85 )sin(3t) +

12
85cos(3t) is one solution to the

nonhomogeneous equation.

Thus the general solution to the 2nd order linear non-
homogeneous equation is

y = c1e
−t + c2e

5t − ( 1485 )sin(3t) +
12
85cos(3t)
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3.) If initial value problem:

Once general solution is known, can solve initial value
problem (i.e., use initial conditions to find c1, c2).

NOTE: you must know the GENERAL solution to the
ODE BEFORE you can solve for the initial values. The
homogeneous solution and the one nonhomogeneous solut-
ion found in steps 1 and 2 above do NOT need to separately
satisfy the initial values.

Solve y′′ − 4y′ − 5y = 4sin(3t), y(0) = 6, y′(0) = 7.

General solution: y = c1e
−t+c2e

5t−( 1485 )sin(3t)+
12
85cos(3t)

Thus y′ = −c1e−t + 5c2e
5t − ( 4285 )cos(3t)−

36
85sin(3t)

y(0) = 6: 6 = c1 + c2 +
12
85

498
85 = c1 + c2

y′(0) = 7: 7 = −c1 + 5c2 − 42
85

637
85 = −c1 + 5c2

6c2 = 498+637
85 = 1135

85 = 227
17 . Thus c2 = 227

102 .

c1 = 498
85 − c2 = 498

85 − 227
102 = 2988−1135

510 = 1853
510 = 109

30

Thus y = ( 10930 )e−t + ( 227102 )e
5t − ( 1485 )sin(3t) +

12
85cos(3t).

Partial Check: y(0) = ( 10930 ) + ( 227102 ) +
12
85 = 6.

y′(0) = − 109
30 + 5( 227102 )−

42
85 = 7.

(e−t)′′−4(e−t)′−5(e−t) = 0 and (e5t)′′−4(e5t)′−5(e5t) = 0
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