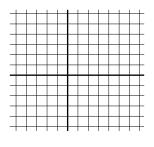

Give that the solution to
$$\mathbf{x}' = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \mathbf{x}$$
 is $\mathbf{x} = c_1 \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} e^{r_1 t} + c_2 \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} e^{r_2 t}$

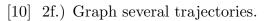
[7] 2a.) Graph the solution to the IVP
$$\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$$
 in the

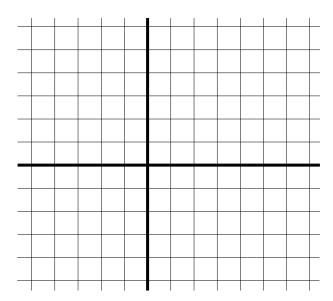
[3] 2b.) Graph the solution to the IVP $\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ in the

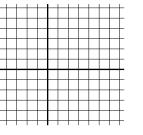


1							1		
-	 		_	_	_	 -	-	-	-

 t, x_2 -plane


-	-	<u> </u>	-	L	<u> </u>	<u> </u>	<u> </u>	<u> </u>	-	L
										1


 x_1, x_2 -plane


[2] 2c.) The equilibrium solution for this system of equations is $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} \\ \end{bmatrix}$.

- [3] 2d.) $\frac{dx_2}{dx_1} =$ _____
- [2] 2e.) Plot several direction vectors where the slope is 0 and where slope is vertical.

 x_1, x_2 -plane

 t, x_2 -plane