Recall that a constant solution is an equilibrium solution. Thus its derivative is 0 .
To find an equilibrium solution (i.e., constant solution), plug it in (for example, plug in $y(t)=k$ or $x_{1}(t)=k_{1}, x_{2}(t)=k_{2}$ depending on variables used and if you have one DE or a system of two DEs). Since the derivative of a constant is zero, this is equivalent to setting the derivative $=0$.

Find all equilibrium solutions and classify them (stable, asymptotically stable, semi-stable, unstable and if system of DEs, node, saddle, spiral, center). In the case of non-linear system of DEs, state all possibilities for type of equilibrium solution.

If the (system of) differential equation(s) does not have an equilibrium solution, state so (note 4 of the following 16 problems below do not have an equilibrium solution).

Hint: The eigenvalues of upper and lower triangular matrices are the diagonal entries.
Note: You do not need to draw any direction fields.
1.) $y^{\prime}=(y-3)^{4}(y-5)^{9}$
2.) $y^{\prime}=y^{2}+2$
3.) $y^{\prime}=\sin (y)$
4.) $y^{\prime}=\sin (t)$
5.) $y^{\prime}=\sin ^{2}(y)$
6.) $y^{\prime}=\sin ^{2}(t)$
7.) $y^{\prime}=t y$
8.) $x^{\prime}=4-y^{2}, y^{\prime}=(x+1)(y-x)$
9.) $x^{\prime}=x-2, y^{\prime}=x-1$
10.) $\mathbf{x}^{\prime}=\left[\begin{array}{cc}1 & 0 \\ 0 & -2\end{array}\right] \mathbf{x}$
11.) $\mathbf{x}^{\prime}=\left[\begin{array}{cc}1 & 0 \\ 5 & -2\end{array}\right] \mathbf{x}$
12.) $\mathbf{x}^{\prime}=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right] \mathbf{x}$
13.) $\mathbf{x}^{\prime}=\left[\begin{array}{ll}1 & 0 \\ 5 & 2\end{array}\right] \mathbf{x}$
14.) $\mathbf{x}^{\prime}=\left[\begin{array}{cc}0 & 1 \\ -5 & -2\end{array}\right] \mathbf{x}$
15.) $\mathbf{x}^{\prime}=\left[\begin{array}{cc}0 & 1 \\ -5 & 2\end{array}\right] \mathbf{x}$
16.) $\mathbf{x}^{\prime}=\left[\begin{array}{cc}-1 & 0 \\ 5 & -2\end{array}\right] \mathbf{x}$

Problems 17－20 show the slope field for a first order differential equations．In addition to determ－ ining and classifying all equilibrium solutions（if any），also draw the trajectories satisfying the initial values $y(0)=1, y(1)=0, y(1)=2, y(0)=-3$ ．

17．）

 mann ATtIt $1+14+14$ merimzrizizery －1rititrita $\rightarrow 44_{4}+14$

行行行行行行行

18．）

19．）

20．）

Problems 21-23 show the stream plot in the $x_{1}-x_{2}$-plane for a system of two first order differential equations In addition to determining and classifying all equilibrium solutions, also draw the trajectories satisfying the initial values $\left(x_{1}(0), x_{2}(0)\right)=(0,1),\left(x_{1}(0), x_{2}(0)\right)=(1,0),\left(x_{1}(0), x_{2}(0)\right)=(1,2)$, $\left(x_{1}(0), x_{2}(0)\right)=(-1,0)$. Also describe the basins of attraction.
21.)

22.)

23.)

