Recall that a constant solution is an equilibrium solution. Thus its derivative is 0 .
To find an equilibrium solution (i.e., constant solution), plug it in (for example, plug in $y(t)=k$ or $x_{1}(t)=k_{1}, x_{2}(t)=k_{2}$ depending on variables used and if you have one DE or a system of two DEs). Since the derivative of a constant is zero, this is equivalent to setting the derivative $=0$.

Find all equilibrium solutions and classify them (stable, asymptotically stable, semi-stable, unstable and if system of DEs, node, saddle, spiral, center). In the case of non-linear system of DEs, state all possibilities for type of equilibrium solution.

If the (system of) differential equation(s) does not have an equilibrium solution, state so (note 4 of the following 16 problems below do not have an equilibrium solution).

Hint: The eigenvalues of upper and lower triangular matrices are the diagonal entries.
Note: You do not need to draw any direction fields.
1.) $y^{\prime}=(y-3)^{4}(y-5)^{9} \quad y=3$ is semi-stable, $y=5$ is unstable.
2.) $y^{\prime}=y^{2}+2 \quad$ no equilibrium solution.
3.) $y^{\prime}=\sin (y) \quad y=2 n \pi$ is unstable, $y=(2 n+1) \pi$ is asymptotically stable.
4.) $y^{\prime}=\sin (t) \quad$ no equilibrium solution.
5.) $y^{\prime}=\sin ^{2}(y) \quad y=n \pi$ is semi-stable.
6.) $y^{\prime}=\sin ^{2}(t) \quad$ no equilibrium solution.
7.) $y^{\prime}=t y \quad y=0$ is unstable.
8.) $x^{\prime}=4-y^{2}, y^{\prime}=(x+1)(y-x)$

If $4-y^{2}=0$, then $y= \pm 2$
If $y=2$, then $(x+1)(y-x)=(x+1)(2-x)=0$. Thus $x=-1,2$.
If $y=-2$, then $(x+1)(y-x)=(x+1)(-2-x)=0$. Thus $x=-1,-2$.
Jacobian matrix: $\left[\begin{array}{cc}0 & -2 y \\ y-2 x-1 & x+1\end{array}\right]$
For $(x, y)=(-1,2)$, Jacobian matrix is $\left[\begin{array}{cc}0 & -4 \\ 3 & 0\end{array}\right]$
Thus $(x(t), y(t))=(-1,2)$ is a stable center or unstable spiral or asymptotically stable spiral.
For $(x, y)=(2,2)$, Jacobian matrix is $\left[\begin{array}{cc}0 & -4 \\ -3 & 3\end{array}\right]$
Thus $(x(t), y(t))=(2,2)$ is an unstable saddle.

For $(x, y)=(-1,-2)$, Jacobian matrix is $\left[\begin{array}{cc}0 & 4 \\ -1 & 0\end{array}\right]$
Thus $(x(t), y(t))=(-1,-2)$ is a stable center or unstable spiral or asymptotically stable spiral.
For $(x, y)=(-2,-2)$, Jacobian matrix is $\left[\begin{array}{cc}0 & 4 \\ 1 & -1\end{array}\right]$
Thus $(x(t), y(t))=(-2,-2)$ is an unstable saddle.
9.) $x^{\prime}=x-2, y^{\prime}=x-1 \quad$ no equilibrium solution.
10.) $\mathbf{x}^{\prime}=\left[\begin{array}{cc}1 & 0 \\ 0 & -2\end{array}\right] \mathbf{x}$

One positive (1) and one negative eigenvalue (-2). Thus $\left(x_{1}(t), x_{2}(t)\right)=(0,0)$ is an unstable saddle.
11.) $\mathbf{x}^{\prime}=\left[\begin{array}{cc}1 & 0 \\ 5 & -2\end{array}\right] \mathbf{x}$

One positive (1) and one negative eigenvalue (-2). Thus $\left(x_{1}(t), x_{2}(t)\right)=(0,0)$ is an unstable saddle.
12.) $\mathbf{x}^{\prime}=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right] \mathbf{x}$

Purely imaginary eigenvalues $i,-i$. Thus $\left(x_{1}(t), x_{2}(t)\right)=(0,0)$ is a stable center.
13.) $\mathbf{x}^{\prime}=\left[\begin{array}{ll}1 & 0 \\ 5 & 2\end{array}\right] \mathbf{x}$

Two positive eigenvalues 1,2 . Thus $\left(x_{1}(t), x_{2}(t)\right)=(0,0)$ is an unstable node.
14.) $\mathbf{x}^{\prime}=\left[\begin{array}{cc}0 & 1 \\ -5 & -2\end{array}\right] \mathbf{x}$

Two complex eigenvalues, $-1 \pm 2 i$, with negative real part. Thus $\left(x_{1}(t), x_{2}(t)\right)=(0,0)$ is an asymptotically stable spiral.
15.) $\mathbf{x}^{\prime}=\left[\begin{array}{cc}0 & 1 \\ -5 & 2\end{array}\right] \mathbf{x}$

Two complex eigenvalues, $1 \pm 2 i$, with positive real part. Thus $\left(x_{1}(t), x_{2}(t)\right)=(0,0)$ is an unstable spiral.
16.) $\mathbf{x}^{\prime}=\left[\begin{array}{cc}-1 & 0 \\ 5 & -2\end{array}\right] \mathbf{x}$

Two negative eigenvalues $-1,-2$. Thus $\left(x_{1}(t), x_{2}(t)\right)=(0,0)$ is an asymptotically stable node.

Problems 17-20 show the slope field for a first order differential equations. In addition to determinning and classifying all equilibrium solutions (if any), also draw the trajectories satisfying the initial

$y=1$ is unstable. $y=-2$ is asymptotically stable.
18.)
$-y(1)=0$
$y(0)=-3$

20.)

$y=1$ is unstable. $y=-2$ is semi-stable.
19.)

Problems 21-23 show the stream plot in the $x_{1}-x_{2}$-plane for a system of two first order differential equations In addition to determining and classifying all equilibrium solutions, also draw the trajectories satisfying the initial values $\left(x_{1}(0), x_{2}(0)\right)=(0,1),\left(x_{1}(0), x_{2}(0)\right)=(1,0),\left(x_{1}(0), x_{2}(0)\right)=(1,2)$, $\left(x_{1}(0), x_{2}(0)\right)=(-1,0)$. Also describe the basins of attraction.

$\left(x_{1}(t), x_{2}(t)\right)=(0,0)$ is an unstable saddle.
$\left(x_{1}(t), x_{2}(t)\right)=(1,2)$ is an asymptotically stable node.
basin of attraction: $x_{1}>0$.
$\left(x_{1}(t), x_{2}(t)\right)=(-1,2)$ is an asymptotically stable node.
basin of attraction: $x_{1}<0$.
22.)

$\left(x_{1}(t), x_{2}(t)\right)=(2,2)$ is an unstable saddle.
$\left(x_{1}(t), x_{2}(t)\right)=(-2,-2)$ is an asympt. stable spiral.
basin of attraction:

23.)

$\left(x_{1}(t), x_{2}(t)\right)=(0,0)$ is an unstable node.
No basin of attraction: $x_{1}<0$.

