From ICON:

Exam 1 will be this coming Wednesday in class. Please bring your ID. No calculators allowed. The exam will cover the sections covered so far in Ch 1, 2, 3 per course schedule http://homepage.divms.uiowa.edu/~idarcy /COURSES/100/FALL18/3600.htm

It will include 1 proof question from the following list.

- Prove a function is not 1:1.
- Prove a function is 1:1.
- Prove a function is not linear.
- Prove a function is linear.
- Show that if $y=f(t)$ and $y=g(t)$ are solutions to $a y^{\prime \prime}+b^{\prime}+c y=0$, then y $=r f(t)+s g(t)$ is also a solution to this second order linear homogeneous differential equation.
- 2.8 induction proof.

Copies of exams from previous semesters including answers can be found below:

The following online book contains many nice examples and good explanations: Paul's Online Notes: Differential Equations ©

Note: You must be able to identify which techniques you need to use. For example:

Integration:

* Integration by substitution
* Integration by parts
* Integration by partial fractions

Note: Partial fractions are also used in ch 6 for a different application.

For differential equations:
Is the differential equation 1 rst order or 2 nd order?
If 2 nd order: Section 3.1, solve $a y^{\prime \prime}+b y^{\prime}+c y=0$.
Guess $y=e^{r t}$.
$a r^{2} e^{r t}+b r e^{r t}+c e^{r t}=0$ implies $a r^{2}+b r+c=0$,
Need to have two independent solutions.
If $y=\phi_{1}, y=\phi_{2}$ are solutions to a LINEAR HOMOGENEC differential equation, $y=c_{1} \phi_{1}+c_{2} \phi_{2}$ is also a solution

If 1st order: Is the equation linear or separable or ?

Solving second order differential equation:

p. $135: y^{\prime \prime}=f\left(t, y^{\prime}\right), y^{\prime \prime}=f\left(y, y^{\prime}\right)$,

Transform to first order: Let $v=y^{\prime}$.
If needed, note $v^{\prime}=\frac{d v}{d t}=\frac{d v}{d t} \frac{d y}{d y}=\frac{d v}{d y} \frac{d y}{d t}=\frac{d v}{d y} v$.
Note this trick sometimes helpful for first order equations.

Ch 3: linear $a y^{\prime \prime}+b y^{\prime}+c y=0$,
Need to have two independent solutions.
If ϕ_{1}, ϕ_{2} are solutions to a LINEAR HOMOGENEOUS differential equation, $c_{1} \phi_{1}+c_{2} \phi_{2}$ is also a solution
direction field $=$ slope field $=$ graph of $\frac{d v}{d t}$ in t, v-plane. *** can use slope field to determine behavior of v including as $t \rightarrow \infty$.
Equilibrium Solution $=$ constant solution stable, unstable, semi-stable.

Solving first order differential equation:

Method 1 (sect. 2.2): Separate variables.
Method 2 (sect. 2.1): If linear $\left[y^{\prime}(t)+p(t) y(t)=g(t)\right]$, multiply equation by an integrating factor $u(t)=e^{\int p(t) d t}$.

$$
\begin{gathered}
y^{\prime}+p y=g \\
y^{\prime} u+u p y=u g \\
(u y)^{\prime}=u g \\
\int(u y)^{\prime}=\int u g \\
u y=\int u g \\
\text { etc... }
\end{gathered}
$$

Method 3 (sect. 2.4): Solve Bernoulli's equation,

$$
y^{\prime}+p(t) y=g(t) y^{n},
$$

when $n>1$ by changing it to a linear equation by substituting $v=y^{1-n}$

If $v=\frac{d x}{d t}$, can use the following to simplify (especially if there are 3 variables).

$$
\frac{d v}{d t}=\frac{d v}{d x} \frac{d x}{d t}=v \frac{d v}{d x}
$$

Section 2.4: Existence and Uniqueness.
In general, for $y^{\prime}=f(t, y), y\left(t_{0}\right)=y_{0}$, solution may or may not exist and solution may or may not be unique.

But we have 2 theorems that guarantee both existence and uniqueness of solutions under certain conditions:

1st order LINEAR differential equation:

Thm 2.4.1: If $p:(a, b) \rightarrow R$ and $g:(a, b) \rightarrow R$ are continuous and $a<t_{0}<b$, then there exists a unique function $y=\phi(t), \phi:(a, b) \rightarrow R$ that satisfies the initial value problem

$$
\begin{gathered}
y^{\prime}+p(t) y=g(t), \\
y\left(t_{0}\right)=y_{0}
\end{gathered}
$$

1st order differential equation (general case):

Thm 2.4.2: Suppose $z=f(t, y)$ and $z=\frac{\partial f}{\partial y}(t, y)$ are continuous on $(a, b) \times(c, d)$ and the point $\left(t_{0}, y_{0}\right) \in$ $(a, b) \times(c, d)$, then there exists an interval $\left(t_{0}-h, t_{0}+\right.$ $h) \subset(a, b)$ such that there exists a unique function $y=\phi(t)$ defined on $\left(t_{0}-h, t_{0}+h\right)$ that satisfies the following initial value problem:

$$
y^{\prime}=f(t, y), \quad y\left(t_{0}\right)=y_{0} .
$$

Note the initial value problem

$$
y^{\prime}=y^{\frac{1}{3}}, y(0)=0
$$

has an infinite number of different solutions.

$$
\begin{gathered}
y^{-\frac{1}{3}} d y=d t \\
\frac{3}{2} y^{\frac{2}{3}}=t+C \\
y= \pm\left(\frac{2}{3} t+C\right)^{\frac{3}{2}} \\
y(0)=0 \text { implies } C=0
\end{gathered}
$$

Thus $y= \pm\left(\frac{2}{3} t\right)^{\frac{3}{2}}$ are solutions.
$y=0$ is also a solution, etc.

$$
y^{\prime}=y^{1 / 3}
$$

Compare to Thm 2.4.2:
$f(t, y)=y^{\frac{1}{3}}$ is continuous near $(0,0)$
But $\frac{\partial f}{\partial y}(t, y)=\frac{1}{3} y^{\frac{-2}{3}}$ is not continuous near (0,0) since it isn't defined at $(0,0)$.

Section 2.4 example: $\frac{d y}{d t}=\frac{1}{(1-t)(2-y)}$
$F(y, t)=\frac{1}{(1-t)(2-y)}$ is continuous for all $t \neq 1, y \neq 2$
$\frac{\partial F}{\partial y}=\frac{\partial\left(\frac{1}{(1-t)(2-y)}\right)}{\partial y}=\frac{1}{(1-t)} \frac{\partial(2-y)^{-1}}{\partial y}=\frac{1}{(1-t)(2-y)^{2}}$
$\frac{\partial F}{\partial y}$ is continuous for all $t \neq 1, y \neq 2$
Thus the IVP $\frac{d y}{d t}=\frac{1}{(1-t)(2-y)}, y\left(t_{0}\right)=y_{0}$ has a unique solution if $t_{0} \neq 1, y_{0} \neq 2$.

Note that if $y_{0}=2, \frac{d y}{d t}=\frac{1}{(1-t)(2-y)}, y\left(t_{0}\right)=2$ has two solutions if $t_{0} \neq 1$ (and if we allow vertical slope in domain. Note normally our convention will be to NOT allow vertical slope in domain of solution).

Note that if $t_{0}=1, \frac{d y}{d t}=\frac{1}{(1-t)(2-y)}, y(1)=y_{0}$ has no solutions.

$(1,1 /((1-t)(2-y))) / \operatorname{sqr} t\left(1+1 /((1-t)(2-y))^{2}\right)$

Solve via separation of variables: $\frac{d y}{d t}=\frac{1}{(1-t)(2-y)}$
$\int(2-y) d y=\int \frac{d t}{1-t}$ implies $2 y-\frac{y^{2}}{2}=-\ln |1-t|+C$
$y^{2}-4 y-2 \ln |1-t|+C=0$
$y=\frac{4 \pm \sqrt{16+4(2 \ln |1-t|+C)}}{2}=2 \pm \sqrt{4+2 \ln |1-t|+C}$

$$
y=2 \pm \sqrt{2 \ln |1-t|+C}
$$

Find domain: $2 \ln |1-t|+C \geq 0 \& t \neq 1 \& y \neq 2$
NOTE: the convention in this class to to choosel largest possible connected domain where tangent line to solution is never vertical.
$2 \ln |1-t| \geq-C$ and $t \neq 1$ and $y \neq 2$ implies
$\ln |1-t|>-\frac{C}{2} \quad$ Note: we want to find domain for this C and thus this C can't swallow constants).
$|1-t|>e^{-\frac{C}{2}}$ since e^{x} is an increasing function.
$1-t<-e^{-\frac{C}{2}}$ or $1-t>e^{-\frac{C}{2}}$
Domain: $\begin{cases}t>e^{-\frac{C}{2}}+1 & \text { if } t_{0}>1 \\ t<-e^{-\frac{C}{2}}+1 & \text { if } t_{0}<1 .\end{cases}$
2.8: Approximating soln to IVP using seq of fns,

$$
\phi_{n+1}(t)=\int_{0}^{t} f\left(s, \phi_{n}(s)\right) d s
$$

Example: $y^{\prime}=t+2 y, y(0)=0$

$$
\phi_{0}(t)=0, \quad \phi_{1}(t)=\frac{t^{2}}{2}, \quad \phi_{2}(t)=\frac{t^{2}}{2}+\frac{t^{3}}{3},
$$

$$
\phi_{3}(t)=\frac{t^{2}}{2}+\frac{t^{3}}{3}+\frac{t^{4}}{6}, \quad \phi_{4}(t)=\frac{t^{2}}{2}+\frac{t^{3}}{3}+\frac{t^{4}}{6}+\frac{t^{5}}{15}
$$

