$f: A \rightarrow B$ is 1:1 iff $f\left(x_{1}\right)=f\left(x_{2}\right)$ implies $x_{1}=x_{2}$.

$$
f\left(x_{1}\right)=f\left(x_{2}\right) \text { implies } x_{1}=x_{2}
$$

Hypothesis: $f\left(x_{1}\right)=f\left(x_{2}\right) . \quad$ Conclusion $x_{1}=x_{2}$.
Hypothesis implies conclusion.
p implies q.

$$
p \Rightarrow q .
$$

Note a statement, $p \Rightarrow q$, is true if whenever the hypothesis p holds, then the conclusion q also holds.

To prove that a statement is true:
(1) Assume the hypothesis holds.
(2) Prove the conclusion holds.

Ex: To prove a function is $1: 1$:
(1) Assume $f\left(x_{1}\right)=f\left(x_{2}\right)$
(2) Do some algebra to prove $x_{1}=x_{2}$.
[$p \Rightarrow q]$ is equivalent to $[\forall p, q$ holds].
That is, for everything satisfying the hypothesis p, the conclusion q must hold.

A statement is false if the hypothesis holds, but the conclusion need not hold.

Hypothesis does not implies conclusion. p does not imply q.

$$
p \nRightarrow q .
$$

That is there exists a specific case where the hypoth-■ esis holds, but the conclusion does not hold.

To prove that a statement is false:
Find an example where the hypothesis holds, but the conclusion does not hold.

Ex: To prove a function is not 1:1, find specific x_{1}, x_{2} such that $f\left(x_{1}\right)=f\left(x_{2}\right)$, but $x_{1} \neq x_{2}$.

Ex: $f: R \rightarrow R, f(x)=x^{2}$ is not $1: 1$ since $f(1)=1^{2}=1=(-1)^{2}=f(-1)$, but $1 \neq-1$ $\sim[p \Rightarrow q]$ is equivalent to $\sim[\forall p, q$ holds $]$.

Thus if $p \Rightarrow q$ is false, then it is not true that [$\forall p, q$ holds]. That is, $\exists p$ such that q does not hold.

