$f: A \to B$ is 1:1 iff $f(x_1) = f(x_2)$ implies $x_1 = x_2$.

$$f(x_1) = f(x_2)$$
 implies $x_1 = x_2$.

Hypothesis: $f(x_1) = f(x_2)$. Conclusion $x_1 = x_2$.

Hypothesis implies conclusion. p implies q. $p \Rightarrow q$.

Note a statement, $p \Rightarrow q$, is true if whenever the hypothesis p holds, then the conclusion q also holds.

To prove that a statement is true:

- (1) Assume the hypothesis holds.
- (2) Prove the conclusion holds.

Ex: To prove a function is 1:1:

(1) Assume
$$f(x_1) = f(x_2)$$

(2) Do some algebra to prove $x_1 = x_2$.

 $[p \Rightarrow q]$ is equivalent to $[\forall p, q \text{ holds}].$

That is, for everything satisfying the hypothesis p, the conclusion q must hold.

A statement is false if the hypothesis holds, but the conclusion need not hold.

Hypothesis does not implies conclusion. p does not imply q. $p \neq q$.

That is there exists a **specific case** where the hypothesis holds, but the conclusion does not hold.

To prove that a statement is false:

Find an example where the hypothesis holds, but the conclusion does not hold.

Ex: To prove a function is not 1:1, find specific x_1, x_2 such that $f(x_1) = f(x_2)$, but $x_1 \neq x_2$.

Ex: $f : R \to R$, $f(x) = x^2$ is not 1:1 since $f(1) = 1^2 = 1 = (-1)^2 = f(-1)$, but $1 \neq -1$

 $\sim [p \Rightarrow q]$ is equivalent to $\sim [\forall p, q \text{ holds}].$

Thus if $p \Rightarrow q$ is false, then it is not true that $[\forall p, q \text{ holds}]$. That is, $\exists p$ such that q does not hold.