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Background

We will find a power series solution to the equation:

P(t)y ′′ + Q(t)y ′ + R(t)y = 0.

We will assume that t0 is a regular singular point. This
implies:

1. P(t0) = 0,

2. lim
t→t0

(t − t0)Q(t)
P(t)

exists,

3. lim
t→t0

(t − t0)2R(t)
P(t)

exists.



Simplification

If t0 6= 0 then we can make the change of variable x = t − t0
and the ODE:

P(x + t0)y ′′ + Q(x + t0)y ′ + R(x + t0)y = 0.

has a regular singular point at x = 0.

From now on we will work with the ODE

P(x)y ′′ + Q(x)y ′ + R(x)y = 0

having a regular singular point at x = 0.



Assumptions (1 of 2)

Since the ODE has a regular singular point at x = 0 we can
define

x
Q(x)
P(x)

= xp(x) and x2 R(x)
P(x)

= x2q(x)

which are analytic at x = 0 and

lim
x→0

xQ(x)
P(x)

= lim
x→0

xp(x) = p0

lim
x→0

x2R(x)
P(x)

= lim
x→0

x2q(x) = q0.



Assumptions (2 of 2)

Furthermore since xp(x) and x2q(x) are analytic,

xp(x) =
∞∑

n=0

pnxn

x2q(x) =
∞∑

n=0

qnxn

for all −ρ < x < ρ with ρ > 0.



Re-writing the ODE

The second order linear homogeneous ODE can be written as

0 = P(x)y ′′ + Q(x)y ′ + R(x)y

= y ′′ +
Q(x)
P(x)

y ′ +
R(x)
P(x)

y

= x2y ′′ + x2 Q(x)
P(x)

y ′ + x2 R(x)
P(x)

y

= x2y ′′ + x [xp(x)]y ′ + [x2q(x)]y
= x2y ′′ + x [p0 + p1x + · · ·+ pnxn + · · · ] y ′

+ [q0 + q1x + · · ·+ qnxn + · · · ] y .



Special Case: Euler’s Equation

If pn = 0 and qn = 0 for n ≥ 1 then

0 = x2y ′′ + x [p0 + p1x + · · ·+ pnxn + · · · ] y ′

+ [q0 + q1x + · · ·+ qnxn + · · · ] y
= x2y ′′ + p0xy ′ + q0y

which is Euler’s equation.



General Case

When pn 6= 0 and/or qn 6= 0 for some n > 0 then we will
assume the solution to

x2y ′′ + x [xp(x)]y ′ + [x2q(x)]y = 0

has the form

y(x) = x r
∞∑

n=0

anxn =
∞∑

n=0

anx r+n,

an Euler solution multiplied by a power series.



Solution Procedure

Assuming y(x) = x r
∞∑

n=0

anxn we must determine:

1. the values of r ,
2. a recurrence relation for an,

3. the radius of convergence of
∞∑

n=0

anxn.



Example (1 of 8)

Consider the following ODE for which x = 0 is a regular
singular point.

4xy ′′ + 2y ′ + y = 0

Assuming y(x) =
∞∑

n=0

anx r+n is a solution, determine the values

of r and an for n ≥ 0.

y ′(x) =
∞∑

n=0

(r + n)anx r+n−1

y ′′(x) =
∞∑

n=0

(r + n)(r + n − 1)anx r+n−2



Example (2 of 8)

0 = 4xy ′′ + 2y ′ + y

= 4x
∞∑

n=0

(r + n)(r + n − 1)anx r+n−2 + 2
∞∑

n=0

(r + n)anx r+n−1

+
∞∑

n=0

anx r+n

=
∞∑

n=0

4(r + n)(r + n − 1)anx r+n−1 +
∞∑

n=0

2(r + n)anx r+n−1

+
∞∑

n=0

anx r+n

=
∞∑

n=0

[4(r + n)(r + n − 1) + 2(r + n)]anx r+n−1 +
∞∑

n=0

anx r+n



Example (3 of 8)

0 =
∞∑

n=0

[4(r + n)(r + n − 1) + 2(r + n)]anx r+n−1 +
∞∑

n=0

anx r+n

=
∞∑

n=0

2an(r + n)(2r + 2n − 1)x r+n−1 +
∞∑

n=0

anx r+n

=
∞∑

n=0

2an(r + n)(2r + 2n − 1)x r+n−1 +
∞∑

n=1

an−1x r+n−1



Example (4 of 8)

0 =
∞∑

n=0

2an(r + n)(2r + 2n − 1)x r+n−1 +
∞∑

n=1

an−1x r+n−1

= 2a0r(2r − 1)x r−1 +
∞∑

n=1

2an(r + n)(2r + 2n − 1)x r+n−1

+
∞∑

n=1

an−1x r+n−1

= 2a0r(2r − 1)x r−1 +
∞∑

n=1

[2an(r + n)(2r + 2n − 1) + an−1] x r+n−1



Example (5 of 8)

0 = 2a0r(2r − 1)x r−1

+
∞∑

n=1

[2an(r + n)(2r + 2n − 1) + an−1] x r+n−1

This implies

0 = r(2r − 1) (the indicial equation) and
0 = 2an(r + n)(2r + 2n − 1) + an−1

Thus we see that r = 0 or r =
1
2

and the recurrence relation is

an = − an−1

(2r + 2n)(2r + 2n − 1)
, for n ≥ 1.



Example, Case r = 0 (6 of 8)

The recurrence relation becomes an = − an−1

2n(2n − 1)
.

a1 = − a0

(2)(1)
= −a0

2!

a2 = − a1

(4)(3)
=

a0

4!

a3 = − a2

(6)(5)
= −a0

6!
...

an =
(−1)na0

(2n)!

Thus y1(x) =
∞∑

n=0

(−1)na0

(2n)!
xn+0 = a0 cos

√
x .



Example, Case r = 1/2 (7 of 8)

The recurrence relation becomes an = − an−1

(2n + 1)2n
.

a1 = − a0

(3)(2)
= −a0

3!

a2 = − a1

(5)(4)
=

a0

5!

a3 = − a2

(7)(6)
= −a0

7!
...

an =
(−1)na0

(2n + 1)!

Thus y2(x) =
∞∑

n=0

(−1)na0

(2n + 1)!
xn+1/2 = a0 sin

√
x .



Example (8 of 8)

We should verify that the general solution to

4xy ′′ + 2y ′ + y = 0

is
y(x) = c1 cos

√
x + c2 sin

√
x .



Remarks

I This technique just outlined will succeed provided r1 6= r2
and r1 − r2 6= n ∈ Z.

I If r1 = r2 or r1 − r2 = n ∈ Z then we can always find the
solution corresponding to the larger of the two roots r1 or
r2.

I The second (linearly independent) solution will have a
more complicated form involving ln x .



General Case: Method of Frobenius

Given x2y ′′ + x [xp(x)] y ′ +
[
x2q(x)

]
y = 0 where x = 0 is a

regular singular point and

xp(x) =
∞∑

n=0

pnxn and x2q(x) =
∞∑

n=0

qnxn

are analytic at x = 0, we will seek a solution to the ODE of the
form

y(x) =
∞∑

n=0

anx r+n

where a0 6= 0.



Substitute into the ODE

0 = x2
∞∑

n=0

(r + n)(r + n − 1)anx r+n−2

+ x

[ ∞∑
n=0

pnxn

] ∞∑
n=0

(r + n)anx r+n−1 +

[ ∞∑
n=0

qnxn

] ∞∑
n=0

anx r+n

=
∞∑

n=0

(r + n)(r + n − 1)anx r+n

+

[ ∞∑
n=0

pnxn

] ∞∑
n=0

(r + n)anx r+n +

[ ∞∑
n=0

qnxn

] ∞∑
n=0

anx r+n



Collect Like Powers of x

0 = a0r(r − 1)x r + a1(r + 1)rx r+1 + · · ·
+ (p0 + p1x + · · · )(a0rx r + a1(r + 1)x r+1 + · · · )
+ (q0 + q1x + · · · )(a0x r + a1x r+1 + · · · )

= a0 [r(r − 1) + p0r + q0] x r

+ [a1(r + 1)r + p0a1(r + 1) + p1a0r + q0a1 + q1a0] x r+1

+ · · ·
= a0 [r(r − 1) + p0r + q0] x r

+ [a1 ((r + 1)r + p0(r + 1) + q0) + a0 (p1r + q1)] x r+1

+ · · ·



Indicial Equation

If we define F (r) = r(r − 1) + p0r + q0 then the ODE can be
written as

0 = a0F (r)x r + [a1F (r + 1) + a0 (p1r + q1)] x r+1

+ [a2F (r + 2) + a0 (p2r + q2) + a1 (p1(r + 1) + q1)] x r+2

+ · · ·

The equation

0 = F (r) = r(r − 1) + p0r + q0

is called the indicial equation. The solutions are called the
exponents of singularity.



Recurrence Relation

The coefficients of x r+n for n ≥ 1 determine the recurrence
relation:

0 = anF (r + n) +
n−1∑
k=0

ak (pn−k (r + k) + qn−k )

an = −
∑n−1

k=0 ak (pn−k (r + k) + qn−k )

F (r + n)

provided F (r + n) 6= 0.



Exponents of Singularity

I By convention we will let the roots of the indicial equation
F (r) = 0 be r1 and r2.

I When r1 and r2 ∈ R we will assign subscripts so that
r1 ≥ r2.

I Consequently the recurrence relation where r = r1,

an(r1) = −
∑n−1

k=0 ak (pn−k (r1 + k) + qn−k )

F (r1 + n)

is defined for all n ≥ 1.
I One solution to the ODE is then

y1(x) = x r1

(
1 +

∞∑
n=1

an(r1)xn

)
.



Case: r1 − r2 /∈ N

I If r1 − r2 6= n for any n ∈ N then r1 6= r2 + n for any n ∈ N
and consequently F (r2 + n) 6= 0 for any n ∈ N.

I Consequently the recurrence relation where r = r2,

an(r2) = −
∑n−1

k=0 ak (pn−k (r2 + k) + qn−k )

F (r2 + n)

is defined for all n ≥ 1.
I A second solution to the ODE is then

y2(x) = x r2

(
1 +

∞∑
n=1

an(r2)xn

)
.



Example

Find the indicial equation, exponents of singularity, and discuss
the nature of solutions to the ODE

x2y ′′ − x(2 + x)y ′ + (2 + x2)y = 0

near the regular singular point x = 0.



Solution

p0 = lim
x→0

x
−x(2 + x)

x2 = − lim
x→0

(2 + x) = −2

q0 = lim
x→0

x2 2 + x2

x2 = lim
x→0

(2 + x2) = 2

The indicial equation is then

r(r − 1) + (−2)r + 2 = 0
r2 − 3r + 2 = 0

(r − 2)(r − 1) = 0.

The exponents of singularity are r1 = 2 and r2 = 1.
Consequently we have one solution of the form

y1(x) = x2

(
1 +

∞∑
n=1

anxn

)
.



Case: r1 = r2 Equal Exponents of Singularity (1 of 4)
I When the exponents of singularity are equal then

F (r) = (r − r1)
2.

I We have a solution to the ODE of the form

y1(x) = x r

(
1 +

∞∑
n=1

an(r)xn

)
.

I Differentiating this solution and substituting into the ODE
yields

0 = a0F (r)x r

+
∞∑

n=1

[
anF (r + n) +

n−1∑
k=0

ak (pn−k (r + k) + qn−k )

]
x r+n

= a0(r − r1)
2x r .

when an solves the recurrence relation.



Case: r1 = r2 Equal Exponents of Singularity (2 of 4)

Recall: for the ODE x2y ′′ + x [xp(x)]y ′ + [x2q(x)]y = 0 we can
define the linear operator

L[y ] = x2y ′′ + x [xp(x)]y ′ + [x2q(x)]y

so that the ODE can be written compactly as L[y ] = 0.

Consider the infinite series solution to the ODE,

φ(r , x) = x r

[
1 +

∞∑
n=1

an(r)xn

]
.

Note: since the coefficients of the series depend on r we
denote the solution as φ(r , x).



Case: r1 = r2 Equal Exponents of Singularity (3 of 4)

0 = L[φ](r1, x)

0 = a0(r − r1)
2x r
∣∣∣
r=r1

∂

∂r
(0)|r=r1

=
∂

∂r

(
a0(r − r1)

2x r
)∣∣∣

r=r1

0 = 2a0(r − r1)x r |r=r1
+ a0(r − r1)

2(ln x)x r
∣∣∣
r=r1

0 = a0(r − r1)
2(ln x)x r

∣∣∣
r=r1

0 = L
[
∂φ

∂r

]
(r1, x)

Thus a second solution to the ODE is y2(x) =
∂φ(r , x)
∂r

∣∣∣∣
r=r1

.



Case: r1 = r2 Equal Exponents of Singularity (4 of 4)

y2(x) =
∂φ(r , x)
∂r

∣∣∣∣
r=r1

=
∂

∂r

(
x r

[
1 +

∞∑
n=1

an(r)xn

])∣∣∣∣∣
r=r1

= (ln x)x r

[
1 +

∞∑
n=1

an(r)xn

]
+ x r

∞∑
n=1

a′n(r)x
n

∣∣∣∣∣
r=r1

= (ln x)y1(x) + x r1

∞∑
n=1

a′n(r1)xn



Example (1 of 9)

Find the general solution to the ODE:

xy ′′ + y ′ + xy = 0

near the regular singular point x = 0.

lim
x→0

x
(

1
x

)
= 1 = p0

lim
x→0

x2
(x

x

)
= 0 = q0

Thus the indicial equation is F (r) = r(r − 1) + r = r2 = 0 and
the exponents of singularity are r1 = r2 = 0.



Example (2 of 9)
Assume y(x) =

∞∑
n=0

anx r+n, differentiate, and substitute into the

given ODE.

0 = x
∞∑

n=0

(r + n)(r + n − 1)anx r+n−2 +
∞∑

n=0

(r + n)anx r+n−1

+ x
∞∑

n=0

anx r+n

=
∞∑

n=0

(r + n)(r + n − 1)anx r+n−1 +
∞∑

n=0

(r + n)anx r+n−1

+
∞∑

n=0

anx r+n+1

=
∞∑

n=0

(r + n)2anx r+n−1 +
∞∑

n=0

anx r+n+1



Example (3 of 9)

0 =
∞∑

n=0

(r + n)2anx r+n−1 +
∞∑

n=0

anx r+n+1

=
∞∑

n=0

(r + n)2anx r+n−1 +
∞∑

n=2

an−2x r+n−1

= a0r2x r−1 + a1(r + 1)2x r +
∞∑

n=2

(r + n)2anx r+n−1

+
∞∑

n=2

an−2x r+n−1

= a0r2x r−1 + a1(r + 1)2x r +
∞∑

n=2

[
(r + n)2an + an−2

]
x r+n−1



Example (4 of 9)

0 = a0r2x r−1 + a1(r + 1)2x r +
∞∑

n=2

[
(r + n)2an + an−2

]
x r+n−1

I The exponents of singularity are r1 = r2 = 0.

I The recurrence relation is an(r) = −
an−2(r)
(r + n)2 .

I a1 = 0 which implies a2n+1 = 0 for all n ∈ N.



Example (5 of 9)

When r = 0, and a0 is arbitrary

a2 = −a0

22 = − a0

41(1!)2

a4 = −a2

42 =
a0

42(2!)2

a6 = −a4

62 = − a0

43(3!)2

...

a2n =
(−1)na0

4n(n!)2

thus

y1(x) = a0

(
1 +

∞∑
n=1

(−1)nx2n

4n(n!)2

)
.



Example (6 of 9)

Now find the second solution.

an(r) = − an−2(r)
(r + n)2

a′n(r) = −
a′n−2(r)(r + n)2 − an−2(r)2(r + n)

(r + n)4

= −
a′n−2(r)(r + n)− 2an−2(r)

(r + n)3

a′n(0) =
2an−2(0)− na′n−2(0)

n3



Example (7 of 9)

Since a2n+1(r) = 0 for all n ∈ N then a′2n+1(r) = 0 for all n ∈ N.

Since a0 is an arbitrary constant then a′0 = 0.



Example (8 of 9)
Recall the recurrence relation for n ≥ 2:

a′n(0) =
2an−2(0)− na′n−2(0)

n3

If n = 2 then

a′2(0) =
2a0 − 2a′0

23

=
a0

4
= (1)

a0

41(1!)2

If n = 4 then

a′4(0) =
2a2 − 4a′2

43

=
a2 − 2a′2

42(2!)

=
1

42(2!)

(
−a0

4
− 2

(a0

4

))
= −

(
1 +

1
2

)
a0

42(2!)2



Example (9 of 9)

a′6(0) =
2a4 − 6a′4

63

=
a4 − 3a′4

62(3)

=

(
1 +

1
2
+

1
3

)
a0

43(3!)2

...

a′2n(0) =
(−1)n+1∑n

k=1
1
k

4n(n!)2

Thus

y2(x) = (ln x)y1(x) +
∞∑

n=1

(
(−1)n+1∑n

k=1
1
k

4n(n!)2

)
x2n.



The Story So Far (1 of 3)

Considering the second-order linear, homogeneous ODE:

P(x)y ′′ + Q(x)y ′ + R(x)y = 0

where x0 = 0 is a regular singular point.

This implies P(x0) = 0 and

lim
x→x0

(x − x0)
Q(x)
P(x)

= lim
x→0

x p(x) = p0

lim
x→x0

(x − x0)
2 R(x)

P(x)
= lim

x→0
x2q(x) = q0.



The Story So Far (2 of 3)

Define the polynomial F (r) = r(r − 1) + p0r + q0, then

r(r − 1) + p0r + q0 = 0

is called the indicial equation and the roots r1 ≥ r2 are called
the exponents of singularity.

If r1 − r1 6∈ N then we have a fundamental set of solutions of the
form

y1(x) = x r1

[
1 +

∞∑
n=1

an(r1)xn

]

y2(x) = x r2

[
1 +

∞∑
n=1

an(r2)xn

]
.



The Story So Far (2 of 3)

Define the polynomial F (r) = r(r − 1) + p0r + q0, then

r(r − 1) + p0r + q0 = 0

is called the indicial equation and the roots r1 ≥ r2 are called
the exponents of singularity.

If r1 − r1 6∈ N then we have a fundamental set of solutions of the
form

y1(x) = x r1

[
1 +

∞∑
n=1

an(r1)xn

]

y2(x) = x r2

[
1 +

∞∑
n=1

an(r2)xn

]
.



The Story So Far (3 of 3)

If r1 = r2 then we have a fundamental set of solutions of the
form

y1(x) = x r1

[
1 +

∞∑
n=1

an(r1)xn

]

y2(x) = y1(x) ln x + x r1

∞∑
n=1

a′n(r1)xn.

Now we may take up the final case when r1 − r2 ∈ N.



The Story So Far (3 of 3)

If r1 = r2 then we have a fundamental set of solutions of the
form

y1(x) = x r1

[
1 +

∞∑
n=1

an(r1)xn

]

y2(x) = y1(x) ln x + x r1

∞∑
n=1

a′n(r1)xn.

Now we may take up the final case when r1 − r2 ∈ N.



Case: r1 − r2 = N ∈ N

The second solution has the form

y2(x) = a y1(x) ln x + x r2

[
1 +

∞∑
n=1

cn(r2)xn

]
where

a = lim
r→r2

(r − r2)aN(r) and

cn(r2) =
d
dr

[(r − r2)an(r)]
∣∣∣∣
r=r2

.

We can assume a0 = 1 for simplicity.



Example (1 of 8)

Find the general solution to the ODE

x y ′′ − y = 0

with regular singular point at x = 0.

lim
x→0

x
(

0
x

)
= 0 = p0

lim
x→0

x2
(
−1
x

)
= 0 = q0

Thus the indicial equation is F (r) = r(r − 1) and the exponents
of singularity are r1 = 1 and r2 = 0.



Example (2 of 8)

0 = x
∞∑

n=0

(r + n)(r + n − 1)anx r+n−2 −
∞∑

n=0

anx r+n

=
∞∑

n=0

(r + n)(r + n − 1)anx r+n−1 −
∞∑

n=0

anx r+n

=
∞∑

n=0

(r + n)(r + n − 1)anx r+n−1 −
∞∑

n=1

an−1x r+n−1

= a0r(r − 1)x r−1 +
∞∑

n=1

[(r + n)(r + n − 1)an − an−1] x r+n−1



Example (3 of 8)

Recurrence relation for n ≥ 1:

an(r) =
an−1(r)

(r + n)(r + n − 1)

an(1) =
an−1(1)
n(n + 1)

If a0 = 1 then

an(1) =
1

n!(n + 1)!

and

y1(x) = x

[
1 +

∞∑
n=1

xn

n!(n + 1)!

]
.



Example (4 of 8)

According to the formula of Frobenius

y2(x) = ay1(x) ln x + x r2

[
1 +

∞∑
n=1

cn(r2)xn

]
.

a = lim
r→r2

(r − r2)aN(r)

= lim
r→0

ra1(r)

= lim
r→0

r
a0

r(r + 1)

= lim
r→0

1
r + 1

= 1



Example (5 of 8)

c1(r2) =
d
dr

[(r − r2)a1(r)]
∣∣∣∣
r=r2

c1(0) =
d
dr

[
ra0

r(r + 1)

]∣∣∣∣
r=0

=
d
dr

[
a0

r + 1

]∣∣∣∣
r=0

=
d
dr

[
1

r + 1

]∣∣∣∣
r=0

= −1



Example (6 of 8)

c2(r2) =
d
dr

[(r − r2)a2(r)]
∣∣∣∣
r=r2

c2(0) =
d
dr

[ra2(r)]
∣∣∣∣
r=0

=
d
dr

[
ra1(r)

(r + 1)(r + 2)

]∣∣∣∣
r=0

=
d
dr

[
ra0

r(r + 1)2(r + 2)

]∣∣∣∣
r=0

=
d
dr

[
1

(r + 1)2(r + 2)

]∣∣∣∣
r=0

= −5
4



Example (7 of 8)

c3(r2) =
d
dr

[(r − r2)a3(r)]
∣∣∣∣
r=r2

c3(0) =
d
dr

[
1

(r + 1)2(r + 2)2(r + 3)

]∣∣∣∣
r=0

= − 5
18



Example (8 of 8)

So the second solution has the form

y2(x) = y1(x) ln x + 1− x − 5
4

x2 − 5
18

x3 + · · · .




