# Series Solutions Near a Regular Singular Point 

MATH 365 Ordinary Differential Equations

J. Robert Buchanan

Department of Mathematics

## Spring 2015

banach.millersville.edu/~bob/math365/Singular/main.pdf

## Background

We will find a power series solution to the equation:

$$
P(t) y^{\prime \prime}+Q(t) y^{\prime}+R(t) y=0
$$

We will assume that $t_{0}$ is a regular singular point. This implies:

1. $P\left(t_{0}\right)=0$,
2. $\lim _{t \rightarrow t_{0}} \frac{\left(t-t_{0}\right) Q(t)}{P(t)}$ exists,
3. $\lim _{t \rightarrow t_{0}} \frac{\left(t-t_{0}\right)^{2} R(t)}{P(t)}$ exists.

## Simplification

If $t_{0} \neq 0$ then we can make the change of variable $x=t-t_{0}$ and the ODE:

$$
P\left(x+t_{0}\right) y^{\prime \prime}+Q\left(x+t_{0}\right) y^{\prime}+R\left(x+t_{0}\right) y=0
$$

has a regular singular point at $x=0$.
From now on we will work with the ODE

$$
P(x) y^{\prime \prime}+Q(x) y^{\prime}+R(x) y=0
$$

having a regular singular point at $x=0$.

## Assumptions (1 of 2)

Since the ODE has a regular singular point at $x=0$ we can define

$$
x \frac{Q(x)}{P(x)}=x p(x) \quad \text { and } \quad x^{2} \frac{R(x)}{P(x)}=x^{2} q(x)
$$

which are analytic at $x=0$ and

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{x Q(x)}{P(x)} & =\lim _{x \rightarrow 0} x p(x)=p_{0} \\
\lim _{x \rightarrow 0} \frac{x^{2} R(x)}{P(x)} & =\lim _{x \rightarrow 0} x^{2} q(x)=q_{0}
\end{aligned}
$$

## Assumptions (2 of 2)

Furthermore since $x p(x)$ and $x^{2} q(x)$ are analytic,

$$
\begin{aligned}
x p(x) & =\sum_{n=0}^{\infty} p_{n} x^{n} \\
x^{2} q(x) & =\sum_{n=0}^{\infty} q_{n} x^{n}
\end{aligned}
$$

for all $-\rho<x<\rho$ with $\rho>0$.

## Re-writing the ODE

The second order linear homogeneous ODE can be written as

$$
\begin{aligned}
0= & P(x) y^{\prime \prime}+Q(x) y^{\prime}+R(x) y \\
= & y^{\prime \prime}+\frac{Q(x)}{P(x)} y^{\prime}+\frac{R(x)}{P(x)} y \\
= & x^{2} y^{\prime \prime}+x^{2} \frac{Q(x)}{P(x)} y^{\prime}+x^{2} \frac{R(x)}{P(x)} y \\
= & x^{2} y^{\prime \prime}+x[x p(x)] y^{\prime}+\left[x^{2} q(x)\right] y \\
= & x^{2} y^{\prime \prime}+x\left[p_{0}+p_{1} x+\cdots+p_{n} x^{n}+\cdots\right] y^{\prime} \\
& +\left[q_{0}+q_{1} x+\cdots+q_{n} x^{n}+\cdots\right] y .
\end{aligned}
$$

## Special Case: Euler's Equation

If $p_{n}=0$ and $q_{n}=0$ for $n \geq 1$ then

$$
\begin{aligned}
0= & x^{2} y^{\prime \prime}+x\left[p_{0}+p_{1} x+\cdots+p_{n} x^{n}+\cdots\right] y^{\prime} \\
& +\left[q_{0}+q_{1} x+\cdots+q_{n} x^{n}+\cdots\right] y \\
= & x^{2} y^{\prime \prime}+p_{0} x y^{\prime}+q_{0} y
\end{aligned}
$$

which is Euler's equation.

## General Case

When $p_{n} \neq 0$ and/or $q_{n} \neq 0$ for some $n>0$ then we will assume the solution to

$$
x^{2} y^{\prime \prime}+x[x p(x)] y^{\prime}+\left[x^{2} q(x)\right] y=0
$$

has the form

$$
y(x)=x^{r} \sum_{n=0}^{\infty} a_{n} x^{n}=\sum_{n=0}^{\infty} a_{n} x^{r+n},
$$

an Euler solution multiplied by a power series.

## Solution Procedure

Assuming $y(x)=x^{r} \sum_{n=0}^{\infty} a_{n} x^{n}$ we must determine:

1. the values of $r$,
2. a recurrence relation for $a_{n}$,
3. the radius of convergence of $\sum_{n=0}^{\infty} a_{n} x^{n}$.

## Example (1 of 8)

Consider the following ODE for which $x=0$ is a regular singular point.

$$
4 x y^{\prime \prime}+2 y^{\prime}+y=0
$$

Assuming $y(x)=\sum_{n=0}^{\infty} a_{n} x^{r+n}$ is a solution, determine the values of $r$ and $a_{n}$ for $n \geq 0$.

$$
\begin{aligned}
& y^{\prime}(x)=\sum_{n=0}^{\infty}(r+n) a_{n} x^{r+n-1} \\
& y^{\prime \prime}(x)=\sum_{n=0}^{\infty}(r+n)(r+n-1) a_{n} x^{r+n-2}
\end{aligned}
$$

## Example (2 of 8)

$$
\begin{aligned}
0= & 4 x y^{\prime \prime}+2 y^{\prime}+y \\
= & 4 x \sum_{n=0}^{\infty}(r+n)(r+n-1) a_{n} x^{r+n-2}+2 \sum_{n=0}^{\infty}(r+n) a_{n} x^{r+n-1} \\
& +\sum_{n=0}^{\infty} a_{n} x^{r+n} \\
= & \sum_{n=0}^{\infty} 4(r+n)(r+n-1) a_{n} x^{r+n-1}+\sum_{n=0}^{\infty} 2(r+n) a_{n} x^{r+n-1} \\
& +\sum_{n=0}^{\infty} a_{n} x^{r+n} \\
= & \sum_{n=0}^{\infty}[4(r+n)(r+n-1)+2(r+n)] a_{n} x^{r+n-1}+\sum_{n=0}^{\infty} a_{n} x^{r+n}
\end{aligned}
$$

## Example (3 of 8)

$$
\begin{aligned}
0 & =\sum_{n=0}^{\infty}[4(r+n)(r+n-1)+2(r+n)] a_{n} x^{r+n-1}+\sum_{n=0}^{\infty} a_{n} x^{r+n} \\
& =\sum_{n=0}^{\infty} 2 a_{n}(r+n)(2 r+2 n-1) x^{r+n-1}+\sum_{n=0}^{\infty} a_{n} x^{r+n} \\
& =\sum_{n=0}^{\infty} 2 a_{n}(r+n)(2 r+2 n-1) x^{r+n-1}+\sum_{n=1}^{\infty} a_{n-1} x^{r+n-1}
\end{aligned}
$$

## Example (4 of 8)

$$
\begin{aligned}
0= & \sum_{n=0}^{\infty} 2 a_{n}(r+n)(2 r+2 n-1) x^{r+n-1}+\sum_{n=1}^{\infty} a_{n-1} x^{r+n-1} \\
= & 2 a_{0} r(2 r-1) x^{r-1}+\sum_{n=1}^{\infty} 2 a_{n}(r+n)(2 r+2 n-1) x^{r+n-1} \\
& +\sum_{n=1}^{\infty} a_{n-1} x^{r+n-1} \\
= & 2 a_{0} r(2 r-1) x^{r-1}+\sum_{n=1}^{\infty}\left[2 a_{n}(r+n)(2 r+2 n-1)+a_{n-1}\right] x^{r+n-}
\end{aligned}
$$

## Example (5 of 8)

$$
\begin{aligned}
0= & 2 a_{0} r(2 r-1) x^{r-1} \\
& +\sum_{n=1}^{\infty}\left[2 a_{n}(r+n)(2 r+2 n-1)+a_{n-1}\right] x^{r+n-1}
\end{aligned}
$$

This implies

$$
\begin{aligned}
& 0=r(2 r-1) \quad \text { (the indicial equation) and } \\
& 0=2 a_{n}(r+n)(2 r+2 n-1)+a_{n-1}
\end{aligned}
$$

Thus we see that $r=0$ or $r=\frac{1}{2}$ and the recurrence relation is

$$
a_{n}=-\frac{a_{n-1}}{(2 r+2 n)(2 r+2 n-1)}, \quad \text { for } n \geq 1
$$

## Example, Case $r=0(6$ of 8$)$

The recurrence relation becomes $a_{n}=-\frac{a_{n-1}}{2 n(2 n-1)}$.

$$
\begin{aligned}
a_{1} & =-\frac{a_{0}}{(2)(1)}=-\frac{a_{0}}{2!} \\
a_{2} & =-\frac{a_{1}}{(4)(3)}=\frac{a_{0}}{4!} \\
a_{3} & =-\frac{a_{2}}{(6)(5)}=-\frac{a_{0}}{6!} \\
& \vdots \\
a_{n} & =\frac{(-1)^{n} a_{0}}{(2 n)!}
\end{aligned}
$$

Thus $y_{1}(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} a_{0}}{(2 n)!} x^{n+0}=a_{0} \cos \sqrt{x}$.

## Example, Case $r=1 / 2(7$ of 8$)$

The recurrence relation becomes $a_{n}=-\frac{a_{n-1}}{(2 n+1) 2 n}$.

$$
\begin{aligned}
a_{1} & =-\frac{a_{0}}{(3)(2)}=-\frac{a_{0}}{3!} \\
a_{2} & =-\frac{a_{1}}{(5)(4)}=\frac{a_{0}}{5!} \\
a_{3} & =-\frac{a_{2}}{(7)(6)}=-\frac{a_{0}}{7!} \\
& \vdots \\
a_{n} & =\frac{(-1)^{n} a_{0}}{(2 n+1)!}
\end{aligned}
$$

Thus $y_{2}(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} a_{0}}{(2 n+1)!} x^{n+1 / 2}=a_{0} \sin \sqrt{x}$.

## Example (8 of 8)

We should verify that the general solution to

$$
4 x y^{\prime \prime}+2 y^{\prime}+y=0
$$

is

$$
y(x)=c_{1} \cos \sqrt{x}+c_{2} \sin \sqrt{x}
$$

## Remarks

- This technique just outlined will succeed provided $r_{1} \neq r_{2}$ and $r_{1}-r_{2} \neq n \in \mathbb{Z}$.
- If $r_{1}=r_{2}$ or $r_{1}-r_{2}=n \in \mathbb{Z}$ then we can always find the solution corresponding to the larger of the two roots $r_{1}$ or $r_{2}$.
- The second (linearly independent) solution will have a more complicated form involving $\ln x$.


## General Case: Method of Frobenius

Given $x^{2} y^{\prime \prime}+x[x p(x)] y^{\prime}+\left[x^{2} q(x)\right] y=0$ where $x=0$ is a regular singular point and

$$
x p(x)=\sum_{n=0}^{\infty} p_{n} x^{n} \quad \text { and } \quad x^{2} q(x)=\sum_{n=0}^{\infty} q_{n} x^{n}
$$

are analytic at $x=0$, we will seek a solution to the ODE of the form

$$
y(x)=\sum_{n=0}^{\infty} a_{n} x^{r+n}
$$

where $a_{0} \neq 0$.

## Substitute into the ODE

$$
\begin{aligned}
0= & x^{2} \sum_{n=0}^{\infty}(r+n)(r+n-1) a_{n} x^{r+n-2} \\
& +x\left[\sum_{n=0}^{\infty} p_{n} x^{n}\right] \sum_{n=0}^{\infty}(r+n) a_{n} x^{r+n-1}+\left[\sum_{n=0}^{\infty} q_{n} x^{n}\right] \sum_{n=0}^{\infty} a_{n} x^{r+n} \\
= & \sum_{n=0}^{\infty}(r+n)(r+n-1) a_{n} x^{r+n} \\
& +\left[\sum_{n=0}^{\infty} p_{n} x^{n}\right] \sum_{n=0}^{\infty}(r+n) a_{n} x^{r+n}+\left[\sum_{n=0}^{\infty} q_{n} x^{n}\right] \sum_{n=0}^{\infty} a_{n} x^{r+n}
\end{aligned}
$$

## Collect Like Powers of $x$

$$
\begin{aligned}
0= & a_{0} r(r-1) x^{r}+a_{1}(r+1) r x^{r+1}+\cdots \\
& +\left(p_{0}+p_{1} x+\cdots\right)\left(a_{0} r x^{r}+a_{1}(r+1) x^{r+1}+\cdots\right) \\
& +\left(q_{0}+q_{1} x+\cdots\right)\left(a_{0} x^{r}+a_{1} x^{r+1}+\cdots\right) \\
= & a_{0}\left[r(r-1)+p_{0} r+q_{0}\right] x^{r} \\
& +\left[a_{1}(r+1) r+p_{0} a_{1}(r+1)+p_{1} a_{0} r+q_{0} a_{1}+q_{1} a_{0}\right] x^{r+1} \\
& +\cdots \\
= & a_{0}\left[r(r-1)+p_{0} r+q_{0}\right] x^{r} \\
& +\left[a_{1}\left((r+1) r+p_{0}(r+1)+q_{0}\right)+a_{0}\left(p_{1} r+q_{1}\right)\right] x^{r+1} \\
& +\cdots
\end{aligned}
$$

## Indicial Equation

If we define $F(r)=r(r-1)+p_{0} r+q_{0}$ then the ODE can be written as

$$
\begin{aligned}
0= & a_{0} F(r) x^{r}+\left[a_{1} F(r+1)+a_{0}\left(p_{1} r+q_{1}\right)\right] x^{r+1} \\
& +\left[a_{2} F(r+2)+a_{0}\left(p_{2} r+q_{2}\right)+a_{1}\left(p_{1}(r+1)+q_{1}\right)\right] x^{r+2} \\
& +\cdots
\end{aligned}
$$

The equation

$$
0=F(r)=r(r-1)+p_{0} r+q_{0}
$$

is called the indicial equation. The solutions are called the exponents of singularity.

## Recurrence Relation

The coefficients of $x^{r+n}$ for $n \geq 1$ determine the recurrence relation:

$$
\begin{aligned}
0 & =a_{n} F(r+n)+\sum_{k=0}^{n-1} a_{k}\left(p_{n-k}(r+k)+q_{n-k}\right) \\
a_{n} & =-\frac{\sum_{k=0}^{n-1} a_{k}\left(p_{n-k}(r+k)+q_{n-k}\right)}{F(r+n)}
\end{aligned}
$$

provided $F(r+n) \neq 0$.

## Exponents of Singularity

- By convention we will let the roots of the indicial equation $F(r)=0$ be $r_{1}$ and $r_{2}$.
- When $r_{1}$ and $r_{2} \in \mathbb{R}$ we will assign subscripts so that $r_{1} \geq r_{2}$.
- Consequently the recurrence relation where $r=r_{1}$,

$$
a_{n}\left(r_{1}\right)=-\frac{\sum_{k=0}^{n-1} a_{k}\left(p_{n-k}\left(r_{1}+k\right)+q_{n-k}\right)}{F\left(r_{1}+n\right)}
$$

is defined for all $n \geq 1$.

- One solution to the ODE is then

$$
y_{1}(x)=x^{r_{1}}\left(1+\sum_{n=1}^{\infty} a_{n}\left(r_{1}\right) x^{n}\right)
$$

## Case: $r_{1}-r_{2} \notin \mathbb{N}$

- If $r_{1}-r_{2} \neq n$ for any $n \in \mathbb{N}$ then $r_{1} \neq r_{2}+n$ for any $n \in \mathbb{N}$ and consequently $F\left(r_{2}+n\right) \neq 0$ for any $n \in \mathbb{N}$.
- Consequently the recurrence relation where $r=r_{2}$,

$$
a_{n}\left(r_{2}\right)=-\frac{\sum_{k=0}^{n-1} a_{k}\left(p_{n-k}\left(r_{2}+k\right)+q_{n-k}\right)}{F\left(r_{2}+n\right)}
$$

is defined for all $n \geq 1$.

- A second solution to the ODE is then

$$
y_{2}(x)=x^{r_{2}}\left(1+\sum_{n=1}^{\infty} a_{n}\left(r_{2}\right) x^{n}\right)
$$

## Example

Find the indicial equation, exponents of singularity, and discuss the nature of solutions to the ODE

$$
x^{2} y^{\prime \prime}-x(2+x) y^{\prime}+\left(2+x^{2}\right) y=0
$$

near the regular singular point $x=0$.

## Solution

$$
\begin{aligned}
& p_{0}=\lim _{x \rightarrow 0} x \frac{-x(2+x)}{x^{2}}=-\lim _{x \rightarrow 0}(2+x)=-2 \\
& q_{0}=\lim _{x \rightarrow 0} x^{2} \frac{2+x^{2}}{x^{2}}=\lim _{x \rightarrow 0}\left(2+x^{2}\right)=2
\end{aligned}
$$

The indicial equation is then

$$
\begin{aligned}
r(r-1)+(-2) r+2 & =0 \\
r^{2}-3 r+2 & =0 \\
(r-2)(r-1) & =0
\end{aligned}
$$

The exponents of singularity are $r_{1}=2$ and $r_{2}=1$.
Consequently we have one solution of the form

$$
y_{1}(x)=x^{2}\left(1+\sum_{n=1}^{\infty} a_{n} x^{n}\right)
$$

## Case: $r_{1}=r_{2}$ Equal Exponents of Singularity (1 of 4)

- When the exponents of singularity are equal then

$$
F(r)=\left(r-r_{1}\right)^{2}
$$

- We have a solution to the ODE of the form

$$
y_{1}(x)=x^{r}\left(1+\sum_{n=1}^{\infty} a_{n}(r) x^{n}\right)
$$

- Differentiating this solution and substituting into the ODE yields

$$
\begin{aligned}
0= & a_{0} F(r) x^{r} \\
& +\sum_{n=1}^{\infty}\left[a_{n} F(r+n)+\sum_{k=0}^{n-1} a_{k}\left(p_{n-k}(r+k)+q_{n-k}\right)\right] x^{r+n} \\
= & a_{0}\left(r-r_{1}\right)^{2} x^{r} .
\end{aligned}
$$

when $a_{n}$ solves the recurrence relation.

## Case: $r_{1}=r_{2}$ Equal Exponents of Singularity (2 of 4)

Recall: for the ODE $x^{2} y^{\prime \prime}+x[x p(x)] y^{\prime}+\left[x^{2} q(x)\right] y=0$ we can define the linear operator

$$
L[y]=x^{2} y^{\prime \prime}+x[x p(x)] y^{\prime}+\left[x^{2} q(x)\right] y
$$

so that the ODE can be written compactly as $L[y]=0$.
Consider the infinite series solution to the ODE,
$\phi(r, x)=x^{r}\left[1+\sum_{n=1}^{\infty} a_{n}(r) x^{n}\right]$.
Note: since the coefficients of the series depend on $r$ we denote the solution as $\phi(r, x)$.

## Case: $r_{1}=r_{2}$ Equal Exponents of Singularity (3 of 4)

$$
\begin{aligned}
0 & =L[\phi]\left(r_{1}, x\right) \\
0 & =\left.a_{0}\left(r-r_{1}\right)^{2} x^{r}\right|_{r=r_{1}} \\
\left.\frac{\partial}{\partial r}(0)\right|_{r=r_{1}} & =\left.\frac{\partial}{\partial r}\left(a_{0}\left(r-r_{1}\right)^{2} x^{r}\right)\right|_{r=r_{1}} \\
0 & =\left.2 a_{0}\left(r-r_{1}\right) x^{r}\right|_{r=r_{1}}+\left.a_{0}\left(r-r_{1}\right)^{2}(\ln x) x^{r}\right|_{r=r_{1}} \\
0 & =\left.a_{0}\left(r-r_{1}\right)^{2}(\ln x) x^{r}\right|_{r=r_{1}} \\
0 & =L\left[\frac{\partial \phi}{\partial r}\right]\left(r_{1}, x\right)
\end{aligned}
$$

Thus a second solution to the ODE is $y_{2}(x)=\left.\frac{\partial \phi(r, x)}{\partial r}\right|_{r=r_{1}}$.

Case: $r_{1}=r_{2}$ Equal Exponents of Singularity (4 of 4)

$$
\begin{aligned}
y_{2}(x) & =\left.\frac{\partial \phi(r, x)}{\partial r}\right|_{r=r_{1}} \\
& =\left.\frac{\partial}{\partial r}\left(x^{r}\left[1+\sum_{n=1}^{\infty} a_{n}(r) x^{n}\right]\right)\right|_{r=r_{1}} \\
& =(\ln x) x^{r}\left[1+\sum_{n=1}^{\infty} a_{n}(r) x^{n}\right]+\left.x^{r} \sum_{n=1}^{\infty} a_{n}^{\prime}(r) x^{n}\right|_{r=r_{1}} \\
& =(\ln x) y_{1}(x)+x^{r_{1}} \sum_{n=1}^{\infty} a_{n}^{\prime}\left(r_{1}\right) x^{n}
\end{aligned}
$$

## Example (1 of 9)

Find the general solution to the ODE:

$$
x y^{\prime \prime}+y^{\prime}+x y=0
$$

near the regular singular point $x=0$.

$$
\begin{aligned}
& \lim _{x \rightarrow 0} x\left(\frac{1}{x}\right)=1=p_{0} \\
& \lim _{x \rightarrow 0} x^{2}\left(\frac{x}{x}\right)=0=q_{0}
\end{aligned}
$$

Thus the indicial equation is $F(r)=r(r-1)+r=r^{2}=0$ and the exponents of singularity are $r_{1}=r_{2}=0$.

## Example (2 of 9)

Assume $y(x)=\sum_{n=0} a_{n} x^{r+n}$, differentiate, and substitute into the given ODE.

$$
\begin{aligned}
0= & x \sum_{n=0}^{\infty}(r+n)(r+n-1) a_{n} x^{r+n-2}+\sum_{n=0}^{\infty}(r+n) a_{n} x^{r+n-1} \\
& +x \sum_{n=0}^{\infty} a_{n} x^{r+n} \\
= & \sum_{n=0}^{\infty}(r+n)(r+n-1) a_{n} x^{r+n-1}+\sum_{n=0}^{\infty}(r+n) a_{n} x^{r+n-1} \\
& +\sum_{n=0}^{\infty} a_{n} x^{r+n+1} \\
= & \sum_{n=0}^{\infty}(r+n)^{2} a_{n} x^{r+n-1}+\sum_{n=0}^{\infty} a_{n} x^{r+n+1}
\end{aligned}
$$

## Example (3 of 9)

$$
\begin{aligned}
0= & \sum_{n=0}^{\infty}(r+n)^{2} a_{n} x^{r+n-1}+\sum_{n=0}^{\infty} a_{n} x^{r+n+1} \\
= & \sum_{n=0}^{\infty}(r+n)^{2} a_{n} x^{r+n-1}+\sum_{n=2}^{\infty} a_{n-2} x^{r+n-1} \\
= & a_{0} r^{2} x^{r-1}+a_{1}(r+1)^{2} x^{r}+\sum_{n=2}^{\infty}(r+n)^{2} a_{n} x^{r+n-1} \\
& +\sum_{n=2}^{\infty} a_{n-2} x^{r+n-1} \\
= & a_{0} r^{2} x^{r-1}+a_{1}(r+1)^{2} x^{r}+\sum_{n=2}^{\infty}\left[(r+n)^{2} a_{n}+a_{n-2}\right] x^{r+n-1}
\end{aligned}
$$

## Example (4 of 9)

$$
0=a_{0} r^{2} x^{r-1}+a_{1}(r+1)^{2} x^{r}+\sum_{n=2}^{\infty}\left[(r+n)^{2} a_{n}+a_{n-2}\right] x^{r+n-1}
$$

- The exponents of singularity are $r_{1}=r_{2}=0$.
- The recurrence relation is $a_{n}(r)=-\frac{a_{n-2}(r)}{(r+n)^{2}}$.
- $a_{1}=0$ which implies $a_{2 n+1}=0$ for all $n \in \mathbb{N}$.


## Example (5 of 9)

When $r=0$, and $a_{0}$ is arbitrary

$$
\begin{aligned}
a_{2} & =-\frac{a_{0}}{2^{2}}=-\frac{a_{0}}{4^{1}(1!)^{2}} \\
a_{4} & =-\frac{a_{2}}{4^{2}}=\frac{a_{0}}{4^{2}(2!)^{2}} \\
a_{6} & =-\frac{a_{4}}{6^{2}}=-\frac{a_{0}}{4^{3}(3!)^{2}} \\
& \vdots \\
a_{2 n} & =\frac{(-1)^{n} a_{0}}{4^{n}(n!)^{2}}
\end{aligned}
$$

thus

$$
y_{1}(x)=a_{0}\left(1+\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{2 n}}{4^{n}(n!)^{2}}\right)
$$

## Example (6 of 9)

Now find the second solution.

$$
\begin{aligned}
a_{n}(r) & =-\frac{a_{n-2}(r)}{(r+n)^{2}} \\
a_{n}^{\prime}(r) & =-\frac{a_{n-2}^{\prime}(r)(r+n)^{2}-a_{n-2}(r) 2(r+n)}{(r+n)^{4}} \\
& =-\frac{a_{n-2}^{\prime}(r)(r+n)-2 a_{n-2}(r)}{(r+n)^{3}} \\
a_{n}^{\prime}(0) & =\frac{2 a_{n-2}(0)-n a_{n-2}^{\prime}(0)}{n^{3}}
\end{aligned}
$$

## Example (7 of 9)

Since $a_{2 n+1}(r)=0$ for all $n \in \mathbb{N}$ then $a_{2 n+1}^{\prime}(r)=0$ for all $n \in \mathbb{N}$. Since $a_{0}$ is an arbitrary constant then $a_{0}^{\prime}=0$.

## Example (8 of 9)

Recall the recurrence relation for $n \geq 2$ :

$$
a_{n}^{\prime}(0)=\frac{2 a_{n-2}(0)-n a_{n-2}^{\prime}(0)}{n^{3}}
$$

If $n=2$ then

$$
\begin{aligned}
a_{2}^{\prime}(0) & =\frac{2 a_{0}-2 a_{0}^{\prime}}{2^{3}} \\
& =\frac{a_{0}}{4}=(1) \frac{a_{0}}{4^{1}(1!)^{2}}
\end{aligned}
$$

If $n=4$ then

$$
\begin{aligned}
a_{4}^{\prime}(0) & =\frac{2 a_{2}-4 a_{2}^{\prime}}{4^{3}} \\
& =\frac{a_{2}-2 a_{2}^{\prime}}{4^{2}(2!)} \\
& =\frac{1}{4^{2}(2!)}\left(-\frac{a_{0}}{4}-2\left(\frac{a_{0}}{4}\right)\right) \\
& =-\left(1+\frac{1}{2}\right) \frac{a_{0}}{4^{2}(2!)^{2}}
\end{aligned}
$$

## Example (9 of 9)

$$
\begin{aligned}
a_{6}^{\prime}(0) & =\frac{2 a_{4}-6 a_{4}^{\prime}}{6^{3}} \\
& =\frac{a_{4}-3 a_{4}^{\prime}}{6^{2}(3)} \\
& =\left(1+\frac{1}{2}+\frac{1}{3}\right) \frac{a_{0}}{4^{3}(3!)^{2}} \\
& \vdots \\
a_{2 n}^{\prime}(0) & =\frac{(-1)^{n+1} \sum_{k=1}^{n} \frac{1}{k}}{4^{n}(n!)^{2}}
\end{aligned}
$$

Thus

$$
y_{2}(x)=(\ln x) y_{1}(x)+\sum_{n=1}^{\infty}\left(\frac{(-1)^{n+1} \sum_{k=1}^{n} \frac{1}{k}}{4^{n}(n!)^{2}}\right) x^{2 n} .
$$

## The Story So Far (1 of 3)

Considering the second-order linear, homogeneous ODE:

$$
P(x) y^{\prime \prime}+Q(x) y^{\prime}+R(x) y=0
$$

where $x_{0}=0$ is a regular singular point.
This implies $P\left(x_{0}\right)=0$ and

$$
\begin{aligned}
& \lim _{x \rightarrow x_{0}}\left(x-x_{0}\right) \frac{Q(x)}{P(x)}=\lim _{x \rightarrow 0} x p(x)=p_{0} \\
& \lim _{x \rightarrow x_{0}}\left(x-x_{0}\right)^{2} \frac{R(x)}{P(x)}=\lim _{x \rightarrow 0} x^{2} q(x)=q_{0} .
\end{aligned}
$$

## The Story So Far (2 of 3)

Define the polynomial $F(r)=r(r-1)+p_{0} r+q_{0}$, then

$$
r(r-1)+p_{0} r+q_{0}=0
$$

is called the indicial equation and the roots $r_{1} \geq r_{2}$ are called the exponents of singularity.

## The Story So Far (2 of 3)

Define the polynomial $F(r)=r(r-1)+p_{0} r+q_{0}$, then

$$
r(r-1)+p_{0} r+q_{0}=0
$$

is called the indicial equation and the roots $r_{1} \geq r_{2}$ are called the exponents of singularity.

If $r_{1}-r_{1} \notin \mathbb{N}$ then we have a fundamental set of solutions of the form

$$
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left[1+\sum_{n=1}^{\infty} a_{n}\left(r_{1}\right) x^{n}\right] \\
& y_{2}(x)=x^{r_{2}}\left[1+\sum_{n=1}^{\infty} a_{n}\left(r_{2}\right) x^{n}\right] .
\end{aligned}
$$

## The Story So Far (3 of 3)

If $r_{1}=r_{2}$ then we have a fundamental set of solutions of the form

$$
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left[1+\sum_{n=1}^{\infty} a_{n}\left(r_{1}\right) x^{n}\right] \\
& y_{2}(x)=y_{1}(x) \ln x+x^{r_{1}} \sum_{n=1}^{\infty} a_{n}^{\prime}\left(r_{1}\right) x^{n} .
\end{aligned}
$$

## The Story So Far (3 of 3)

If $r_{1}=r_{2}$ then we have a fundamental set of solutions of the form

$$
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left[1+\sum_{n=1}^{\infty} a_{n}\left(r_{1}\right) x^{n}\right] \\
& y_{2}(x)=y_{1}(x) \ln x+x^{r_{1}} \sum_{n=1}^{\infty} a_{n}^{\prime}\left(r_{1}\right) x^{n} .
\end{aligned}
$$

Now we may take up the final case when $r_{1}-r_{2} \in \mathbb{N}$.

## Case: $r_{1}-r_{2}=N \in \mathbb{N}$

The second solution has the form

$$
\begin{aligned}
y_{2}(x) & =a y_{1}(x) \ln x+x^{r_{2}}\left[1+\sum_{n=1}^{\infty} c_{n}\left(r_{2}\right) x^{n}\right] \quad \text { where } \\
a & =\lim _{r \rightarrow r_{2}}\left(r-r_{2}\right) a_{N}(r) \text { and } \\
c_{n}\left(r_{2}\right) & =\left.\frac{d}{d r}\left[\left(r-r_{2}\right) a_{n}(r)\right]\right|_{r=r_{2}} .
\end{aligned}
$$

We can assume $a_{0}=1$ for simplicity.

## Example (1 of 8)

Find the general solution to the ODE

$$
x y^{\prime \prime}-y=0
$$

with regular singular point at $x=0$.

$$
\begin{array}{r}
\lim _{x \rightarrow 0} x\left(\frac{0}{x}\right)=0=p_{0} \\
\lim _{x \rightarrow 0} x^{2}\left(\frac{-1}{x}\right)=0=q_{0}
\end{array}
$$

Thus the indicial equation is $F(r)=r(r-1)$ and the exponents of singularity are $r_{1}=1$ and $r_{2}=0$.

## Example (2 of 8)

$$
\begin{aligned}
0 & =x \sum_{n=0}^{\infty}(r+n)(r+n-1) a_{n} x^{r+n-2}-\sum_{n=0}^{\infty} a_{n} x^{r+n} \\
& =\sum_{n=0}^{\infty}(r+n)(r+n-1) a_{n} x^{r+n-1}-\sum_{n=0}^{\infty} a_{n} x^{r+n} \\
& =\sum_{n=0}^{\infty}(r+n)(r+n-1) a_{n} x^{r+n-1}-\sum_{n=1}^{\infty} a_{n-1} x^{r+n-1} \\
& =a_{0} r(r-1) x^{r-1}+\sum_{n=1}^{\infty}\left[(r+n)(r+n-1) a_{n}-a_{n-1}\right] x^{r+n-1}
\end{aligned}
$$

## Example (3 of 8)

Recurrence relation for $n \geq 1$ :

$$
\begin{aligned}
& a_{n}(r)=\frac{a_{n-1}(r)}{(r+n)(r+n-1)} \\
& a_{n}(1)=\frac{a_{n-1}(1)}{n(n+1)}
\end{aligned}
$$

If $a_{0}=1$ then

$$
a_{n}(1)=\frac{1}{n!(n+1)!}
$$

and

$$
y_{1}(x)=x\left[1+\sum_{n=1}^{\infty} \frac{x^{n}}{n!(n+1)!}\right]
$$

## Example (4 of 8)

According to the formula of Frobenius

$$
\begin{aligned}
& y_{2}(x)=a y_{1}(x) \ln x+x^{r_{2}}\left[1+\sum_{n=1}^{\infty} c_{n}\left(r_{2}\right) x^{n}\right] \\
& \begin{aligned}
a & =\lim _{r \rightarrow r_{2}}\left(r-r_{2}\right) a_{N}(r) \\
& =\lim _{r \rightarrow 0} r a_{1}(r) \\
& =\lim _{r \rightarrow 0} r \frac{a_{0}}{r(r+1)} \\
& =\lim _{r \rightarrow 0} \frac{1}{r+1} \\
& =1
\end{aligned}
\end{aligned}
$$

## Example (5 of 8)

$$
\begin{aligned}
c_{1}\left(r_{2}\right) & =\left.\frac{d}{d r}\left[\left(r-r_{2}\right) a_{1}(r)\right]\right|_{r=r_{2}} \\
c_{1}(0) & =\left.\frac{d}{d r}\left[\frac{r a_{0}}{r(r+1)}\right]\right|_{r=0} \\
& =\left.\frac{d}{d r}\left[\frac{a_{0}}{r+1}\right]\right|_{r=0} \\
& =\left.\frac{d}{d r}\left[\frac{1}{r+1}\right]\right|_{r=0} \\
& =-1
\end{aligned}
$$

## Example (6 of 8)

$$
\begin{aligned}
c_{2}\left(r_{2}\right) & =\left.\frac{d}{d r}\left[\left(r-r_{2}\right) a_{2}(r)\right]\right|_{r=r_{2}} \\
c_{2}(0) & =\left.\frac{d}{d r}\left[r a_{2}(r)\right]\right|_{r=0} \\
& =\left.\frac{d}{d r}\left[\frac{r a_{1}(r)}{(r+1)(r+2)}\right]\right|_{r=0} \\
& =\left.\frac{d}{d r}\left[\frac{r a_{0}}{r(r+1)^{2}(r+2)}\right]\right|_{r=0} \\
& =\left.\frac{d}{d r}\left[\frac{1}{(r+1)^{2}(r+2)}\right]\right|_{r=0} \\
& =-\frac{5}{4}
\end{aligned}
$$

## Example (7 of 8)

$$
\begin{aligned}
c_{3}\left(r_{2}\right) & =\left.\frac{d}{d r}\left[\left(r-r_{2}\right) a_{3}(r)\right]\right|_{r=r_{2}} \\
c_{3}(0) & =\left.\frac{d}{d r}\left[\frac{1}{(r+1)^{2}(r+2)^{2}(r+3)}\right]\right|_{r=0} \\
& =-\frac{5}{18}
\end{aligned}
$$

## Example (8 of 8)

So the second solution has the form

$$
y_{2}(x)=y_{1}(x) \ln x+1-x-\frac{5}{4} x^{2}-\frac{5}{18} x^{3}+\cdots .
$$

