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Background

We will find a power series solution to the equation:
P(t)y"” + Q(t)y’ + R(t)y = 0.

We will assume that tj is a regular singular point. This

implies:
1. P(fh) =0,
(t—1H)Q(t) .
2 Lto P(0) exists,
- (t—1)?R(t) .
3 tl|_>n;10 P(D) exists.



Simplification

If f # 0 then we can make the change of variable x =t — f
and the ODE:

P(x +1t)y" + Q(x + to)y' + R(x + o)y = 0.

has a regular singular point at x = 0.

From now on we will work with the ODE
P(x)y" + Q(x)y’' + R(x)y =0

having a regular singular point at x = 0.



Assumptions (1 of 2)

Since the ODE has a regular singular point at x = 0 we can

define o A
XPE));; — xp(x) and xngi = x%q(x)

which are analytic at x = 0 and

b =m0 =
x?R(x)

. _ . 2 _
P~ aAmx"a(x) = do.

X—




Assumptions (2 of 2)

Furthermore since xp(x) and x2q(x) are analytic,
xp(x) = > pax"
n=0
X2q(x) = Y qnx"
n=0

forall —p < x < pwith p > 0.



Re-writing the ODE

The second order linear homogeneous ODE can be written as

0 = P(x)y"+Q(x)y +R(x)y
v QX) R(x)
- TR TR
_ X2y//+X22E))3y/+X2’ZE))3y
= x%y" + x[xp(X)]y + [x*q(x)ly
= X% "+ x[po+pix+- +pax" 41y
+q+ax+-+ X"+ -]y,

Yy +



Special Case: Euler’s Equation

If pp =0 and g, = 0 for n > 1 then

0 = X2 +x[po+pP1x+-+ppx"+---

+l@+gx+- -+ gx" 41y

= X2y" + poxy’ + Qoy

which is Euler’s equation.



General Case

When p, # 0 and/or g, # 0 for some n > 0 then we will
assume the solution to

x2y" + x[xp(x)]y’ + [x*q(x)]ly =0

has the form

o oo
y(x)=x">"anx"=> " anx"",
n=0 n=0

an Euler solution multiplied by a power series.



Solution Procedure

(0.9}
Assuming y(x) = x" ) _ anx" we must determine:
n=0
1. the values of r,

2. arecurrence relation for a,

(o)
3. the radius of convergence of ) _ a,x”.
n=0



Example (1 of 8)

Consider the following ODE for which x = 0 is a regular
singular point.

axy" +2y' +y =0
Assuming y(x Z apx"t"is a solution, determine the values

n=0
of r and a, for n > 0.

Y(x) = Y (r+max
n=0

Y'(x) = D (r+n)(r+n—1)ax*n?
n=0



Example (2 of 8)

0 = 4xy"+2y +y

o oo
= AX> (r+n)(r+n—1)ax*"2+23 (r+ n)ax """

n=0 n=0

o0
+ Z apx™"
n=0

= > A(r+n)(r+n—1)ax™" 43" 2(r + n)anx

n=0 n=0

o
n=0

= i [4(r +n)(r+n—1)+2(r+ n)]ax""" + i anx"t"

n=0 n=0



Example (3 of 8)

0 = D [A(r+n)(r+n—1)+2(r+n]ax™*" 1 +> ax™*"
n=0 n=0

= Z2an r+n)(2r+2n—1)x""" 1+ZanX
n=0

= > 2ap(r+n)2r+2n—1)x"+"1 4 Z ap_4x" -1

n=0 n=1



Example (4 of 8)

0 = > 2ap(r+n)@r+2n—1)x"*"143 g, x*

n=0 n=1

= 2apr(2r — 1)x" "+ " 2ap(r + n)(2r +2n—1)x*""

n=1

[e.e]
+ Z a,7_1)(r-~-n—1
n=1

= 2ayr(2r — )X+ " [2an(r + n)(2r +2n— 1) + ap_1] X"

n=1



Example (5 of 8)

0 = 2ayr(2r—1)x1
+ ) [Rap(r + n)2r+2n—1) + a, 4] x+"!
n=1
This implies
0 = r(2r-1) (the indicial equation) and
0 = 2ap(r+n)2r+2n—1)+ ap_1
1
2
an—1
(2r+2n)(2r+2n—1)’

Thus we see that r = 0 or r = = and the recurrence relation is

an=— forn> 1.



Example, Case r = 0 (6 of 8)

. _ an—1
The recurrence relation becomes a, = 2n@n—1)"
_ A _ D
N O T
_ a4 _ &
2= TwE) T
@6 e
(=1)"a
an @n)!
[ee] _1\n
Thus y1(x) = ( (zz)laOX”’LO = ayCos VX .

n=0



Example, Case r =1/2 (7 of 8)

. _ an—1
The recurrence relation becomes a, = 702” —)en
_ & _ _a
R €)1 C) BT
_ a4
® = TB@ s
g = -2 _ %
T (e T
_4\n
a, — (D'
(2n+1)!

> (—=1)"a .
Thus yo(x) = ((2nJ)r1;)!x”+1/2 = apsinv/x .



Example (8 of 8)

We should verify that the general solution to

axy" +2y' +y =0

y(x) = ¢y cos Vx + casin V/x.



Remarks

» This technique just outlined will succeed provided ry # r>
andry —r#nez.

» Ifry =rorrn — rn=ne€ Zthen we can always find the
solution corresponding to the larger of the two roots ry or
Io.

» The second (linearly independent) solution will have a
more complicated form involving In x.



General Case: Method of Frobenius

Given x2y" + x [xp(x)] ¥’ + [xzq(x)] y=0where x=0is a
regular singular point and

= ipnx” and x2q(x Z qnx"
n=0

are analytic at x = 0, we will seek a solution to the ODE of the
form

o0

n=0

where ay # 0.



Substitute into the ODE

0 = X2 (r+n)(r+n—1)ax"2
n=0

oo [o.¢]
anxn] Z(r+ n)anxr+n—1 +
n=0 n=0

o

= > (r+n)(r+n—1)ax""

n=0
anx

+ X

o0 oo
Z ann] Z anxr+n
n=0 n=0

anx ] 3 ap

Zr+naxr+”
n=0



Collect Like Powers of x

0 = ar(r—)x"+a(r+ )1 4+...

+(po+p1x + -+ )@+ ay(r+ 1)x*+..)
+(qo + qix + - )(aoxX +ax T +--1)

= a[r(r—1)+por + qo] X
+[@i(r +1)r +poar (r +1) + praor + Goar + grao] X"
_|_...

= ao[r(r—1)+por + qo] X
+[@n ((r+1)r + po(r + 1) + o) + a (P17 + G1)] x™



Indicial Equation

If we define F(r) = r(r — 1) 4+ por + qo then the ODE can be
written as

0 = aF(nx"+[aiF(r+1)+ay(pir+g)]x™
+[aF(r +2) + a0 (por + G2) + a1 (p1(r + 1) + g1)] X2
+...

The equation
0= F(r) = r(r = 1) + por + o

is called the indicial equation. The solutions are called the
exponents of singularity.



Recurrence Relation

The coefficients of X" for n > 1 determine the recurrence

relation:
n—1
0 = aF(r+n)+Y a(Pak(r+k) + ans)
k=0
5 k=08 (Pok(r + k) + Gn-k)
no- F(r+n)

provided F(r + n) # 0.



Exponents of Singularity

» By convention we will let the roots of the indicial equation
F(r)=0be ry and r».

» When ry and r. € R we will assign subscripts so that
rn > r.

» Consequently the recurrence relation where r = ry,

_ k0 aK (Pn—k(r1 + k) + dn_&)
F(rn +n)

an(r1) =

is defined for all n > 1.
» One solution to the ODE is then

yi(x) = x" (1 + ia%n)x”) .
n=1



Case:rp—rn¢N

» Ifri—rn#nforanyne Nthenr; #rn+nforany ne N
and consequently F(r» + n) # 0 forany n € N.

» Consequently the recurrence relation where r = ro,

 h0 8k (Po—k(r2 + K) + Gns)
F(ra+n)

an(fg) =

is defined for all n > 1.
» A second solution to the ODE is then

yo(x) = x" (1 +> an(rg)x”> :
n=1



Example

Find the indicial equation, exponents of singularity, and discuss
the nature of solutions to the ODE

X2y" —x(2+x)y' +(2+x?)y =0

near the regular singular point x = 0.



Solution

. —Xx(2+x) .
= |limx———~*=—1Iim(2 = -2
Po x—0 x2 X—>0( +X)
. 2+x%
= lim x? = lim(2+x3)=2
o x—0 X2 x—>0( + )

The indicial equation is then

rir=1)+(-2)r+2 = 0
rP—3r+2 = 0
(r—=2)(r—1) = 0.

The exponents of singularity are y =2 and r, = 1.
Consequently we have one solution of the form

y1(x) = x? (1 + ianx”> .
n=1



Case: r; = r. Equal Exponents of Singularity (1 of 4)

» When the exponents of singularity are equal then
F(r)=(r—n)>
» We have a solution to the ODE of the form

yi(x) = x" (1 + ian(r)x”> :
n=1

» Differentiating this solution and substituting into the ODE

yields
0 = aoF(r)xr
00 n—1
+ Y |anF(r+n)+ Y ak (pp(r + k) + q,,_k)] x*n
n=1 k=0

= ap(r—r)?x".

when a, solves the recurrence relation.



Case: r1 = r. Equal Exponents of Singularity (2 of 4)

Recall: for the ODE x2y" + x[xp(x)]y’ + [x?q(x)]y = 0 we can
define the linear operator

Lly] = x2y" + x[xp(x)ly’ + [X*q(x)ly

so that the ODE can be written compactly as L[y] = 0.

Consider the infinite series solution to the ODE,
o(r,x) = X' [1 > an(r)X”] .
n=1

Note: since the coefficients of the series depend on r we
denote the solution as ¢(r, x).



Case: r1 = r. Equal Exponents of Singularity (3 of 4)

0 = L[l(rix)
0 = a(r—n)x"
r=nr
0 0 o r
5O = 3 (=),
0 = 2a(r—n)x',_, + a(r — n)2(Inx)x’
r=nr
0 = a(r—n)?(nx)x"
r=r

0 = L [gﬂ (ry,x)

o¢(r, x)
or

Thus a second solution to the ODE is y»(x) =

r=nr



Case: r; = r» Equal Exponents of Singularity (4 of 4)

Yo(x) =

= (Inx)x

r=rnr

= (Inx)y1(x) +x" Z an(r)x"

n=1



Example (1 of 9)

Find the general solution to the ODE:
xy”+y’+xy:0

near the regular singular point x = 0.

lim x 1 = 1=
x—0 X - = Po

lim x2 (g) — 0=q

x—0

Thus the indicial equation is F(r) = r(r —1) +r = r> = 0 and
the exponents of singularity are r; = r. = 0.



Example (2 of 9)_

Assume y(x Zanxr+” differentiate, and substitute into the
n=0
given ODE.
o (e}
0 = x) (r+n(r+n—1)ax*"2+> (r+n)ax""
n=0 n=0
+ X Z apx™ "
n=0
= D (r+n(r+n="1apx™* "+ (r 4+ njax"!
n=0 n=0

o

+ Z aan+n+1
n=0

o0

00
— Z(r+ n)Zanxr+n—1 +Zaan+n+1

n=0 n=0



Example (3 of 9)

o

)
0 = Z(r+n)2anxr+nf1 +Zanxf+n+1
n=0

n=0
o o0
— Z(r+ n)Zanxr+nf1 + Zan_zxr+nf1
n=0
= ayr’x '+ ay(r+1)>x +Zr+n )2anx+1
n=2
o
+ Zan_zxr+n—1
n=2

= arx yay(r+1) X+Z[r+n) an+ an_ 2] -1
n=2



Example (4 of 9)

0=ayr’x "+ a(r+1)> +Z[r+n) an+ an_ 2} x =1
n=2

» The exponents of singularity are r; = . = 0.
a,,_g(r)
(r+np
» a; = 0 which implies a1 =0 forall n € N.

» The recurrence relation is an(r) = —



Example (5 of 9)

When r = 0, and aq is arbitrary

a = —N___&
2T 22T 4i(ne
a = _R2_ &
YT 2T 2212
o - B
¢ T 82 4331
5. — 1"

2T an(nl)2

thus



Example (6 of 9)

Now find the second solution.

B an_o(r)
an(r) = - v jLG)2
a, o(r)(r+n)® —an_o(r)2(r + n)
a’n(l’) = - 2 (f+ n)4
@, o(n)(r+n)—2ay o(r)
o (r+n)3
4(0) — 2ap_»(0) — na,_,(0)

n3



Example (7 of 9)

Since agn.1(r) =0 for all n € N then &

hniq(r) = 0forall neN.

Since & is an arbitrary constant then &, = 0.



Example (8 of 9)

Recall the recurrence relation for n > 2:

an(0) =
If n = 2 then
a,(0)
If n = 4 then
a0) =

23n—2(0) - na’n—Z(O)
n3

24 —28/0

23
ap ap
4 (1)41(1!)2




Example (9 of 9)

2(0) =

Thus




The Story So Far (1 of 3)

Considering the second-order linear, homogeneous ODE:
P(x)y" + Q(x)y" + R(x)y =0

where xo = 0 is a regular singular point.

This implies P(xp) = 0 and

Q(x

~—

Jim (x — Xo) Plx) lim x p(x) = po
lim (x — xp)? A _ im x2q(x) = qo.

X—Xo (X ) x—0



The Story So Far (2 of 3)

Define the polynomial F(r) = r(r — 1) + por + qo, then
r(r=1)+por+qo=0

is called the indicial equation and the roots ry > r, are called
the exponents of singularity.



The Story So Far (2 of 3)

Define the polynomial F(r) = r(r — 1) + por + qo, then
r(r=1)+por+qo=0

is called the indicial equation and the roots ry > r, are called
the exponents of singularity.

If 1 — 1 € Nthen we have a fundamental set of solutions of the
form

yi(x) = x"

1+ i an(n )x”]
n=1

1+ ian(rg)x”] .
n=1

yo(x) = x"




The Story So Far (3 of 3)

If 1 = r> then we have a fundamental set of solutions of the
form

rlx) = xn

1+ io: an(r1 )Xn]
n=1

ya(x) = yi(x)Inx+x">" an(r)x".

n=1



The Story So Far (3 of 3)

If 1 = r> then we have a fundamental set of solutions of the
form

rlx) = xn

1+ io: an(r1 )Xn]
n=1

ya(x) = yi(x)Inx+x">" an(r)x".

n=1

Now we may take up the final case when r; —r, € N.



Case:ry —n=NecN

The second solution has the form

yo(x) = ayi(x)Inx+x2 |14 ca(r2)x"| where
L n=1
a = rll_rﬂz(r —r)an(r) and
() = i r)an(r)]
n\’2) — ar 2)dn —

We can assume gy = 1 for simplicity.



Example (1 of 8)

Find the general solution to the ODE
xy"—y=0

with regular singular point at x = 0.

. 0
)I<|£>nox<x> = 0=po
1
Jim x <x> 0=

Thus the indicial equation is F(r) = r(r — 1) and the exponents
of singularity are y =1 and . = 0.



Example (2 of 8)

0 = x> (r+n(r+n—"1)ax* "2 -3 " a,x*"

n=0 n=0
o

= > (r+n)(r+n-1ax*"" - Zax
n=0

o
= > (r+n)(r+n—1)ax*" Za_1X’+” !
n=0

= aor(r—1)x"" +Z[(r+n)(r+n— 1)an —

n=1

anf1] X

r+n—1



Example (3 of 8)

Recurrence relation for n > 1:

a,,,1(r)
(r+n)(r+n-1)
anf1(1)
n(n+1)

an(r) =
an(1) =

If a9 = 1 then
1

ni(n+1)!

an(1) =
and

yi(x) = x

oo Xn
1 -
+; ni(n+1)!



Example (4 of 8)

According to the formula of Frobenius

1+ i c,,(rg)x”] :

n=1

yo(x) = ay1(x) Inx + x™

a = rll_ryz(r—rg)a,\,(r)

= lim ra{(r)
r—0

. ap
= limr
r—0 r(r+1)
) 1
= lim ——
r—or+1

= 1




Example (5 of 8)

ci(re)

¢1(0)

r

2 §|a &[a Zfa

dr |

[(r —r2)as(r)]

[ rap :|
Lr(r+1)

)
|

r=ro

r=0

r=0

\
—~ +
—

-
+

r=0



Example (6 of 8)

) = Sl n)an)

r=ro

@(0) = o lalr)

r=0

_d [ ra(n) }
ar (r+1)(r+2) r—0
d rag

- L r(r+1)2 (r+2]

_d

©oar (r+1)(r+2)] o
5



Example (7 of 8)

o) = 1= r)as(r)

r=ry

d 1

0 = § et
5
18

r=0



Example (8 of 8)

So the second solution has the form

— S 2
Yo(X)=y1(x)Inx +1—x 2 " 18

5
—7X3+"'.





