Linear algebra pre-requisites you must know.
$\mathbf{b}_{\mathbf{1}}, \ldots, \mathbf{b}_{\mathbf{n}}$ are linearly independent if
$c_{1} \mathbf{b}_{\mathbf{1}}+c_{2} \mathbf{b}_{\mathbf{2}}+\ldots+c_{n} \mathbf{b}_{\mathbf{n}}=d_{1} \mathbf{b}_{\mathbf{1}}+d_{2} \mathbf{b}_{\mathbf{2}}+\ldots+d_{n} \mathbf{b}_{\mathbf{n}}$ implies $c_{1}=d_{1}, c_{2}=d_{2} \ldots, c_{n}=d_{n}$.
or equivalently,
$\mathbf{b}_{\mathbf{1}}, \ldots, \mathbf{b}_{\mathbf{n}}$ are linearly independent if
$c_{1} \mathbf{b}_{\mathbf{1}}+c_{2} \mathbf{b}_{\mathbf{2}}+\ldots+c_{n} \mathbf{b}_{\mathbf{n}}=0$ implies $c_{1}=c_{2}=\ldots c_{n}$.

Example 1: $\mathbf{b}_{\mathbf{1}}=(1,0,0), \mathbf{b}_{\mathbf{2}}=(0,1,0), \mathbf{b}_{\mathbf{3}}=(0,0,1) . \boldsymbol{\square}$

$$
(1,2,3) \neq(1,2,4) .
$$

$$
\text { If }(a, b, c)=(1,2,3) \text { then } a=1, b=2, c=3
$$

Example 2: $\mathbf{b}_{\mathbf{1}}=1, \mathbf{b}_{\mathbf{2}}=t, \mathbf{b}_{\mathbf{3}}=t^{2}$.

$$
1+2 t+3 t^{2} \neq 1+2 t+4 t^{2} .
$$

If $a+b t+c t^{2}=1+2 t+3 t^{2}$ then $a=1, b=2, c=3$.

Application: Partial Fractions

$$
\frac{4}{\left(x^{2}+1\right)(x-3)}=\frac{A x+B}{x^{2}+1}+\frac{C}{x-3}
$$

If you don't like denominators, get rid of them:

$$
\begin{gathered}
4=(A x+B)(x-3)+C\left(x^{2}+1\right) \\
4=A x^{2}+B x-3 A x-3 B+C x^{2}+C \\
4=(A+C) x^{2}+(B-3 A) x-3 B+C
\end{gathered}
$$

I.e., $0 x^{2}+0 x+4=(A+C) x^{2}+(B-3 A) x-3 B+C$

Thus $0=A+C, \quad 0=B-3 A, \quad 4=-3 B+C$.
$C=-A, B=3 A, 4=-3(3 A)+-A \Rightarrow 4=-10 A$.
Hence $A=-\frac{2}{5}, B=3\left(-\frac{2}{5}\right)=-\frac{6}{5}, C=\frac{2}{5}$.

$$
\text { Thus, } \begin{aligned}
\frac{4}{\left(x^{2}+1\right)(x-3)} & =\frac{-\frac{2}{5} x-\frac{6}{5}}{x^{2}+1}+\frac{\frac{2}{5}}{x-3} \\
& =\frac{-2 x-6}{5\left(x^{2}+1\right)}+\frac{2}{5(x-3)}
\end{aligned}
$$

Alternatively, can plug in $x=3$ to quickly find C and then solve for A and B. Can also use matrices to solve linear eqns.

