${\bf R^n}$ a vector space over ${\bf R}$ (or ${\bf C})$ with canonical basis $\{{\bf e_1},...,{\bf e_n}\}$ where ${\bf e_i}=(0,.,0,1,0,...,0)$

Inner product on $\mathbf{R^n}:~(\mathbf{x},\mathbf{y}) = \boldsymbol{\Sigma_{i=1}^n x_i y_i}$

The basis is orthonormal: $(\mathbf{e_i}, \mathbf{e_j},) = \delta_{ij} = \begin{cases} 0 & i \neq j \\ 1 & i = j \end{cases}$

 $d(\mathbf{x}, \mathbf{y}) = ||\mathbf{x} - \mathbf{y}|| = (\mathbf{x}, \mathbf{y})^{\frac{1}{2}}$

The *norm* of $\mathbf{x} = ||\mathbf{x}|| = \mathbf{d}(\mathbf{x}, \mathbf{0})$

 $B^n_{\epsilon}(\mathbf{x}) = \{ \mathbf{y} \in \mathbf{R^n} \mid \mathbf{d}(\mathbf{x}, \mathbf{y}) < \epsilon \} = \text{ball of radius } \epsilon \text{ centered at } \mathbf{x}.$

 $C^n_{\epsilon}(\mathbf{x}) = \{\mathbf{y} \in \mathbf{R}^n \mid |\mathbf{x_i} - \mathbf{y_i}| < \epsilon, \mathbf{i} = 1, ..., \mathbf{n}\} = \text{cube of side } 2\epsilon \text{ centered at } \mathbf{x}.$

 $\mathbf{R^1}=\mathbf{R},\,\mathbf{R^0}=\{\mathbf{0}\}$.

I.2

 $\mathbf{R}^{\mathbf{n}} = \mathbf{E}^{\mathbf{n}}$ where a coordinate system is defined on $\mathbf{E}^{\mathbf{n}}$

A property is *Euclidean* if is does not depend on the choice of an orthonormal coordinate system.

I.3 Topological Manifolds

Defn: M is locally Euclidean of dimension n if for all $p \in M$, there exists an open set U_p such that $p \in U_p$ and there exists a homeomorphism $f_p: U_p \to V_p$ where $V_p \subset \mathbf{R}^n$.

Defn 3.1: An *n*-manifold, M, is a topological space with the following properties:

- 1.) M is locally Euclidean of dimension n.
- 2.) M is Hausdorff.
- 3.) M has a countable basis.

Give an example of a locally Euclidean space which is not Hausdorff:

Ex 3.2: If U is an open subset of an n-manifold, then U is also an n-manifold.

Ex 3.3: $S^n = \{ \mathbf{x} \in \mathbf{R^{n+1}} \mid ||\mathbf{x}|| = 1 \}$ is an ______manifold

Proof. stereographic projection:

projection:

Remark 3.5. For a "smooth" manifold, $M \subset \mathbf{R}^n$, can choose a projection by using the fact that for all $p \in M$ there exists a unit normal vector N_p and tangent plane $T_p(M)$ which varies continuously with p.

Example: smooth and non-smooth curve.

Example 3.4: The product of two manifolds is also a manifold.

Example: Torus = $S^1 \times S^1$.

Theorem 3.6: A manifold is

1.) locally connected, 2.) locally compact, 3.) a union of a countable collection of compact subsets, 4.) normal, and 5.) metrizable.

Defn: X is **locally connected at** x if for every neighborhood U of x, there exists connected open set V such that $x \in V \subset U$. X is **locally connected** if x is locally connected at each of its points.

Defn: X is **locally compact at** x is there exists a compact set $C \subset X$ and a set V open in X such that $x \in V \subset C$. X is **locally compact** if it is locally compact at each of its points.

Defn: X is **regular** if one-point sets are closed in X and if for all closed sets B and for all points $x \notin B$, there exist disjoint open sets, U, V, such that $x \in U$ and $B \subset V$.

Defn: X is **normal** if one-point sets are closed in X and if for all pairs of disjoint closed sets A, B, there exist disjoint open sets, U, V, such that $A \subset U$ and $B \subset V$.

Brouwer's Theorem on Invariance of Domain (1911). If $\mathbf{R}^{n} = \mathbf{R}^{m}$, then n = m.

Recall: M is locally Euclidean of dimension n if for all $p \in M$, there exists an open set U_p such that $p \in U_p$ and there exists a homeomorphism $f: U_p \to V_p$ where $V_p \subset \mathbf{R}^n$.

 (U_p, f) is a coordinate *nbhd* of *p*.

Given (U_p, f) Let $q \in U \subset M$. $f(q) = (f_1(q), f_2(q), ..., f_n(q)) \in \mathbf{R}^n$ are the *coordinates* of q. I.4 Manifolds with boundary and Cutting and Pasting

If dim M = 0, then M =

If M is connected and dim M = 1, then

Thm 4.1: Every compact, connected, orientable 2-manifold is homeomorphic to a sphere, or to a connected sum of tori, or to a connected sum of projective planes Let upper half-space, $H^n = \{(x_1, x_2, \dots, x_n) \in \mathbf{R}^n \mid \mathbf{x_n} \ge \mathbf{0}\},\$

 $\partial H^n = \{(x_1, x_2, \dots, x_{n-1}, 0) \in \mathbf{R^n}\} \sim \mathbf{R^{n-1}}$

M is a manifold with boundary if it is Hausdorff, has a countable basis, and if for all $p \in U$, there exists an open set U_p such that $p \in U_p$ and there exists a homeomorphism $f : U_p \to V_p$ one of the following holds:

i.) $V_p \subset H^n - \partial H^n$ (p is an interior point) or

ii.) $V_p \subset H^n$ and $f(p) \in \partial H^n$ (p is a boundary point).

 $\partial M = \operatorname{set}$ of all boundary points of M is an (n-1)-dimensional manifold.