$\mathbf{R}^{\mathbf{n}}$ a vector space over \mathbf{R} (or \mathbf{C}) with canonical basis $\left\{\mathbf{e}_{\mathbf{1}}, \ldots, \mathbf{e}_{\mathbf{n}}\right\}$ where $\mathbf{e}_{\mathbf{i}}=(0, ., 0,1,0, \ldots, 0)$

Inner product on $\mathbf{R}^{\mathbf{n}}:(\mathbf{x}, \mathbf{y})=\boldsymbol{\Sigma}_{\mathbf{i}=\mathbf{1}}^{\mathbf{n}} \mathbf{x}_{\mathbf{i}} \mathbf{y}_{\mathbf{i}}$
The basis is orthonormal: $\left(\mathbf{e}_{\mathbf{i}}, \mathbf{e}_{\mathbf{j}},\right)=\delta_{i j}= \begin{cases}0 & i \neq j \\ 1 & i=j\end{cases}$
$d(\mathbf{x}, \mathbf{y})=\|\mathbf{x}-\mathbf{y}\|=(\mathbf{x}, \mathbf{y})^{\frac{1}{2}}$
The norm of $\mathbf{x}=\|\mathbf{x}\|=\mathbf{d}(\mathbf{x}, \mathbf{0})$
$B_{\epsilon}^{n}(\mathbf{x})=\left\{\mathbf{y} \in \mathbf{R}^{\mathbf{n}} \mid \mathbf{d}(\mathbf{x}, \mathbf{y})<\epsilon\right\}=$ ball of radius ϵ centered at \mathbf{x}.
$C_{\epsilon}^{n}(\mathbf{x})=\left\{\mathbf{y} \in \mathbf{R}^{\mathbf{n}}| | \mathbf{x}_{\mathbf{i}}-\mathbf{y}_{\mathbf{i}} \mid<\epsilon, \mathbf{i}=\mathbf{1}, \ldots, \mathbf{n}\right\}=$ cube of side 2ϵ centered at \mathbf{x}.
$\mathbf{R}^{\mathbf{1}}=\mathbf{R}, \mathbf{R}^{\mathbf{0}}=\{\mathbf{0}\}$.
I. 2
$\mathbf{R}^{\mathbf{n}}=\mathbf{E}^{\mathbf{n}}$ where a coordinate system is defined on $\mathbf{E}^{\mathbf{n}}$
A property is Euclidean if is does not depend on the choice of an orthonormal coordinate system.

I. 3 Topological Manifolds

Defn: M is locally Euclidean of dimension n if for all $p \in M$, there exists an open set U_{p} such that $p \in U_{p}$ and there exists a homeomorphism $f_{p}: U_{p} \rightarrow V_{p}$ where $V_{p} \subset \mathbf{R}^{\mathbf{n}}$.

Defn 3.1: An n-manifold, M, is a topological space with the following properties:
1.) M is locally Euclidean of dimension n.
2.) M is Hausdorff.
3.) M has a countable basis.

Give an example of a locally Euclidean space which is not Hausdorff:

Ex 3.2: If U is an open subset of an n-manifold, then U is also an n-manifold.

Ex 3.3: $S^{n}=\left\{\mathbf{x} \in \mathbf{R}^{\mathbf{n + 1}} \mid\|\mathbf{x}\|=\mathbf{1}\right\}$ is an \qquad manifold

Proof. stereographic projection:
projection

Remark 3.5. For a "smooth" manifold, $M \subset \mathbf{R}^{\mathbf{n}}$, can choose a projection by using the fact that for all $p \in M$ there exists a unit normal vector N_{p} and tangent plane $T_{p}(M)$ which varies continuously with p.

Example: smooth and non-smooth curve.

Example 3.4: The product of two manifolds is also a manifold.
Example: Torus $=S^{1} \times S^{1}$.
Theorem 3.6: A manifold is
1.) locally connected, 2.) locally compact, 3.) a union of a countable collection of compact subsets, 4.) normal, and 5.) metrizable.

Defn: X is locally connected at x if for every neighborhood U of x, there exists connected open set V such that $x \in V \subset U . X$ is locally connected if x is locally connected at each of its points.

Defn: X is locally compact at x is there exists a compact set $C \subset X$ and a set V open in X such that $x \in V \subset C . X$ is locally compact if it is locally compact at each of its points.

Defn: X is regular if one-point sets are closed in X and if for all closed sets B and for all points $x \notin B$, there exist disjoint open sets, U, V, such that $x \in U$ and $B \subset V$.

Defn: X is normal if one-point sets are closed in X and if for all pairs of disjoint closed sets A, B, there exist disjoint open sets, U , V , such that $A \subset U$ and $B \subset V$.

Brouwer's Theorem on Invariance of Domain (1911). If $\mathbf{R}^{\mathbf{n}}=\mathbf{R}^{\mathbf{m}}$, then $n=m$.

Recall: M is locally Euclidean of dimension n if for all $p \in M$, there exists an open set U_{p} such that $p \in U_{p}$ and there exists a homeomorphism $f: U_{p} \rightarrow V_{p}$ where $V_{p} \subset \mathbf{R}^{\mathbf{n}}$.
$\left(U_{p}, f\right)$ is a coordinate nbhd of p.
Given $\left(U_{p}, f\right)$ Let $q \in U \subset M . f(q)=\left(f_{1}(q), f_{2}(q), \ldots ., f_{n}(q)\right) \in \mathbf{R}^{\mathbf{n}}$ are the coordinates of q.
I. 4 Manifolds with boundary and Cutting and Pasting

If $\operatorname{dim} M=0$, then $M=$
If M is connected and $\operatorname{dim} M=1$, then

Thm 4.1: Every compact, connected, orientable 2-manifold is homeomorphic to a sphere, or to a connected sum of tori, or to a connected sum of projective planes

Let upper half-space, $H^{n}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbf{R}^{\mathbf{n}} \mid \mathbf{x}_{\mathbf{n}} \geq \mathbf{0}\right\}$,
$\partial H^{n}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n-1}, 0\right) \in \mathbf{R}^{\mathbf{n}}\right\} \sim \mathbf{R}^{\mathbf{n}-\mathbf{1}}$
M is a manifold with boundary if it is Hausdorff, has a countable basis, and if for all $p \in U$, there exists an open set U_{p} such that $p \in U_{p}$ and there exists a homeomorphism $f: U_{p} \rightarrow V_{p}$ one of the following holds:
i.) $V_{p} \subset H^{n}-\partial H^{n}$ (p is an interior point) or
ii.) $V_{p} \subset H^{n}$ and $f(p) \in \partial H^{n}$ (p is a boundary point).
$\partial M=$ set of all boundary points of M is an (n-1)-dimensional manifold.

