HW 2.1: 2, 8 (due Friday, next week)
$f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is differentiable at a if

$$
\begin{aligned}
& \lim _{\mathbf{x} \rightarrow \mathbf{a}} \frac{f(\mathbf{x})-f(\mathbf{a})-T(\mathbf{x}-\mathbf{a})}{\|\mathbf{x}-\mathbf{a}\|}=0 \\
& \lim _{\mathbf{x} \rightarrow \mathbf{a}} \frac{f(\mathbf{x})-f(\mathbf{a})-\Sigma b_{i}\left(x_{i}-a_{i}\right)}{\|\mathbf{x}-\mathbf{a}\|}=0
\end{aligned}
$$

$y=f(\mathbf{a})+\Sigma b_{i}\left(x_{i}-a_{i}\right)$ approximates $y=f(\mathbf{x})$
$f(\mathbf{x})=f(\mathbf{a})+T(\mathbf{x}-\mathbf{a})+\|\mathbf{x}-\mathbf{a}\| r(\mathbf{x}, \mathbf{a})$ where $\lim _{\mathbf{x} \rightarrow \mathbf{a}} r(\mathbf{x}, \mathbf{a})=0$

Thm 1.1: If f is differentiable at a, then
1.) f is continuous at a.
2.) All partial derivatives exist at a.
3.) $b_{i}=\left(\frac{\partial f}{\partial x_{i}}\right)_{a}$

Proof: 1.) $\lim _{\mathbf{x} \rightarrow \mathbf{a}} f(\mathbf{x})=\lim _{\mathbf{x} \rightarrow \mathbf{a}} f(\mathbf{a})+T(\mathbf{x}-\mathbf{a})+\|\mathbf{x}-\mathbf{a}\| r(\mathbf{x}, \mathbf{a})=\rrbracket$
2,3.) $\frac{\partial f}{\partial x_{j}}(\mathbf{a})=\lim _{h \rightarrow 0} \frac{f\left(\mathbf{a}+h \mathbf{e}_{\mathbf{j}}\right)-f(\mathbf{a})}{h}$
$=\lim _{h \rightarrow 0} \frac{f(\mathbf{a})+T\left(\mathbf{a}+h \mathbf{e}_{\mathbf{j}}-\mathbf{a}\right)+\left\|\mathbf{a}+h \mathbf{e}_{\mathbf{j}}-\mathbf{a}\right\| r\left(\mathbf{a}+h \mathbf{e}_{\mathbf{j}}, \mathbf{a}\right)-f(\mathbf{a})}{h}$
$=\lim _{h \rightarrow 0} \frac{T\left(h \mathbf{e}_{\mathbf{j}}\right)+|h| r\left(\mathbf{a}+h \mathbf{e}_{\mathbf{j}}, \mathbf{a}\right)}{h}=\lim _{h \rightarrow 0} \frac{h T\left(\mathbf{e}_{\mathbf{j}}\right)+|h| r\left(\mathbf{a}+h \mathbf{e}_{\mathbf{j}}, \mathbf{a}\right)}{h}$

Thm 1.3: If $\frac{\partial f}{\partial x_{j}}$ exist for all j in a nbhd of a and if they are continuous at a, then f is differentiable at a.
Defn: Let V be a nonempty open subset of $R^{n}, f: V \rightarrow R^{m}$, $p \in \mathbf{N}$.
i.) f is C^{p} on V is each partial derivative of order $k \leq p$ exists and is continuous on V.
ii.) f is C^{∞} on V if f is C^{p} on V for all $p \in \mathbf{N}(f$ is smooth $)$.

Chain rule 1: Suppose $f:(a, b) \rightarrow \mathbf{R}^{n}, g: \mathbf{R}^{n} \rightarrow \mathbf{R}$, then
$\frac{d}{d t}(g \circ f)_{t_{0}}=D(G)_{f\left(t_{0}\right)} D(f)_{t_{0}}=\left(b_{1}, \ldots, b_{n}\right)\left(\begin{array}{c}f_{1}^{\prime}\left(t_{0}\right) \\ f_{2}^{\prime}\left(t_{0}\right) \\ \ldots \\ f_{n}^{\prime}\left(t_{0}\right)\end{array}\right)$

$$
=\sum_{i=1}^{n}\left(\frac{\partial g}{\partial x_{i}}\right)_{f\left(t_{0}\right)}\left(\frac{d f_{i}}{d t}\right)_{t_{0}}
$$

Ex: $f(t)=\left(t^{2}, \sin (t)\right), D(f)=\binom{2 t}{\cos (t)}$
$g(x, y)=x+y^{3}, D(g)=\left(1,3 y^{2}\right)$
$(g \circ f)(t)=g\left(t^{2}, \sin (t)\right)=t^{2}+\sin ^{3}(t)$
$(g \circ f)^{\prime}(t)=2 t_{0}+3 \sin ^{2}\left(t_{0}\right) \cos \left(t_{0}\right)$
$D(g)_{f\left(t_{0}\right)} D(f)_{t_{0}}=\left(1,3 \sin ^{2}\left(t_{0}\right)\right)\binom{2 t_{0}}{\cos \left(t_{0}\right)}$,

Defn: U is starlike with respect to \mathbf{a} if $\mathbf{x} \in U$ implies $\overline{\mathbf{a x}} \subset U$
Thm 1.5 (Mean Value Theorem) Let g by a differentiable function on an open set $U \subset \mathbf{R}^{n}$. Let $\mathbf{a} \in U$ and suppose U is starlike with respect to \mathbf{a}. Then given $\mathbf{x} \in U$, there exists $c \in \mathbf{R}, 0<t_{0}<1$ such that
$g(\mathbf{x})-g(\mathbf{a})=\sum_{i=1}^{n}\left(\frac{\partial g}{\partial x_{i}}\right)_{\mathbf{p}}\left(x_{i}-a_{i}\right)$
where $\mathbf{p}=\mathbf{a}+t_{0}(\mathbf{x}-\mathbf{a})$

Cor 1.6: If $\left|\frac{\partial g}{\partial x_{i}}\right|<K$ on U for all i, then for all $\mathbf{x} \in U$,

$$
|g(\mathbf{x})-g(\mathbf{a})|<K \sqrt{n}\|\mathbf{x}-\mathbf{a}\|
$$

Cor 1.7 If $f \in C^{r}$ on U, then $\frac{\partial^{k} g}{\partial x_{i_{1}} \partial x_{i_{2}} \ldots \partial x_{i_{k}}}=\frac{\partial^{k} g}{\partial x_{j_{1}} \partial x_{j_{2}} \ldots \partial x_{j_{k}}}$ where $\left(j_{1}, j_{2}, \ldots, j_{k}\right)$ is a permutation of $\left(i_{1}, i_{2}, \ldots, i_{k}\right)$
2.2: $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$

Let $\pi_{i}: \mathbf{R}^{m} \rightarrow \mathbf{R}, \pi_{i}(\mathbf{x})=x_{i}$
$f=\left(f_{1}, \ldots, f_{m}\right)$ where $f_{i}=\pi_{i} \circ f$
f continuous iff f_{i} continuous for all i
$f \in C^{r}$ iff $f_{i} \in C^{r}$ for all i
$f \in C^{\infty}$ iff $f_{i} \in C^{\infty}$ for all i
Defn: The Jacobian matrix of f at a is

$$
\left[\frac{\partial f_{i}}{\partial x_{j}}(\mathbf{a})\right]_{m \times n}=\left[\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}}(\mathbf{a}) & \ldots & \frac{\partial f_{1}}{\partial x_{n}}(\mathbf{a}) \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot \\
\frac{\partial f_{m}}{\partial x_{1}}(\mathbf{a}) & \cdots & \frac{\partial f_{m}}{\partial x_{n}}(\mathbf{a})
\end{array}\right]
$$

2.1 Let V be an open subset of $R^{n}, \mathbf{a} \in V, f: V \rightarrow R^{m}$. Then f is differentiable at a if and only if there is a matrix T and a function $\epsilon: R^{n} \rightarrow R^{m}$ such that $\lim _{\mathbf{h} \rightarrow 0} \epsilon(\mathbf{h})=\mathbf{0}$ and

$$
f(\mathbf{a}+\mathbf{h})-f(\mathbf{a})=T(\mathbf{h})+\|\mathbf{h}\| \epsilon(\mathbf{h})
$$

Or equivalently, there exists an m-tuple, $R(\mathbf{x}, \mathbf{a})=\left(r_{1}(\mathbf{x}, \mathbf{a}), r_{2}(\mathbf{x}, \mathbf{a}), \ldots, r_{m}(\mathbf{x}, \mathbf{a})\right.$ such that $\lim _{\mathrm{x} \rightarrow a}\|R(\mathbf{x}, \mathbf{a})\|=0$ and

$$
f(\mathbf{x})=f(\mathbf{a})+T(\mathbf{x}-\mathbf{a})+\|\mathbf{x}-\mathbf{a}\| R(\mathbf{x}, \mathbf{a})
$$

Thm 2.2: Let f by a differentiable function on an open set $U \subset$ \mathbf{R}^{n}. Let $\mathbf{a} \in U$ and suppose U is starlike with respect to \mathbf{a}. If $\left|\frac{\partial f_{i}}{\partial x_{i}}\right|<K$ on U for all i, j, then for all $\mathbf{x} \in U$,

$$
\|f(\mathbf{x})-f(\mathbf{a})\|<K \sqrt{n m}\|\mathbf{x}-\mathbf{a}\|
$$

Proof: $\|f(\mathbf{x})-f(\mathbf{a})\|=\sqrt{\sum_{i=1}^{m}\left(f_{i}(\mathbf{x})-f_{i}(\mathbf{a})\right)^{2}}$
$<\sqrt{\sum_{i=1}^{m}(K \sqrt{n}| | \mathbf{x}-\mathbf{a} \|)^{2}}=\sqrt{m(K \sqrt{n}\|\mathbf{x}-\mathbf{a}\|)^{2}}$
$=K \sqrt{n m}\|\mathbf{x}-\mathbf{a}\|$

Thm 2.3 (Chain rule): Suppose $U \subset R^{m}$ is open and $f: U \rightarrow$ $V \subset \mathbf{R}^{m}, g: V \rightarrow \mathbf{R}^{p}$. Let $h=g \circ f$. Suppose f is differentiable at $a \in U$ and g is differentiable at $f(a) \in V$. Then h is differentiable at $a \in U$ and $D(h)_{a}=D(G)_{f(a)} D(f)_{a}$.

Cor 2.4: If $f, g \in C^{r}$ on U, V respectively, then $h=g \circ f \in \mathbf{C}^{r}$.

