Method 1:
$T_{\mathbf{a}}\left(\mathbf{R}^{n}\right)=\left\{(\mathbf{a}, \mathbf{x}) \mid \mathbf{x} \in \mathbf{R}^{n}\right\}$
$\phi(\mathbf{a x})=\mathbf{x}-\mathbf{a}$
canonical basis $\left\{\phi^{-1}\left(e_{i}\right) \mid i=1, \ldots, n\right\}$
Method 2:
Let $x(t): \mathbf{R} \rightarrow \mathbf{R}^{n}$, a C^{1} curve such that $x(0)=\mathbf{a}$
$x(t) \sim y(t)$ if $x_{i}^{\prime}(t)=y_{i}^{\prime}(t)$ for $t \in(-\epsilon, \epsilon)$
Let $f([x(t)])=\mathbf{x}^{\prime}(0)=\left(x_{1}^{\prime}(0), \ldots, x_{n}^{\prime}(0)\right)$
Let $T_{\mathbf{a}}\left(\mathbf{R}^{n}\right)=\left\{[x(t)] \mid x \in C^{1}, x(0)=\mathbf{a}\right\}$
$[x(t)]+[y(t)]=f^{-1}\left(x^{\prime}(0)+y^{\prime}(0)\right)$
$\alpha[x(t)]=f^{-1}\left(\alpha x^{\prime}(0)\right)$

Let $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ and let $\mathbf{v} \in R^{n}$ such that $\|\mathbf{v}\|=1$
The directional derivative of f at \mathbf{a} in the direction of \mathbf{v} is
$D_{\mathbf{v}} f(\mathbf{a})=\lim _{h \rightarrow 0} \frac{f(\mathbf{a}+h \mathbf{v})-f(\mathbf{a})}{h}$
$=D[f(\mathbf{a}+t \mathbf{v})]_{0}=D f_{\mathbf{a}} \mathbf{v}=D f_{\mathbf{a}} \cdot \mathbf{v}=\left.\left(\frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{n}}\right)\right|_{a} \cdot \mathbf{v}=$

