Let
$$A_{m \times n} = \begin{pmatrix} \mathbf{r}_1 \\ \mathbf{r}_2 \\ \dots \\ \mathbf{r}_m \end{pmatrix} = (\mathbf{c}_1 \quad \mathbf{c}_2 \quad \dots \quad \mathbf{c}_n)$$

Rank of $A = dim(span\{\mathbf{r}_1, ..., \mathbf{r}_m\}) = dim(span\{\mathbf{c}_1, ..., \mathbf{c}_m\})$ = maximum order of any nonvanishing minor determinant.

	(1)	2	3	4		/1	3	2	4
Ex:	0	0	0	0	\sim	0	0	0	0
	$\int 0$	0	5	6/		$\left(0 \right)$	5	0	6/

Let $F: U \subset \mathbf{R}^n \to \mathbf{R}^m \in C^1$.

Rank of F at $x = \operatorname{rank}$ of DF(x)

F has rank k if F has rank k at each x.

 $Det: M^{n \times m} \to \mathbf{R}$ is a continuous function.

Suppose rank DF(a) = k implies there exists V open such that $a \in V$ and $DF(x) \ge k$ for all $x \in V$

Ex: $F(x_1, x_2) = (x_1x_2 + 5, x_1 + x_2 - 3)$

$$DF = \begin{pmatrix} x_2 & x_1 \\ 1 & 1 \end{pmatrix}$$

Rank Theorem: Suppose $A_0 \subset \mathbf{R}^n$, $B_0 \subset \mathbf{R}^m$, $F : A_0 \to B_0 \in C^1$ $a \in A_0, b \in B_0$. Suppose rank $\mathbf{F} = k$.

Then there exists $A^{open} \subset A_0$ such that $a \in A$ and $B^{open} \subset B_0$ such that $b \in B$ and G, H, C^r diffeomorphisms

such that $G: A \to U^{open} \subset \mathbf{R}^n, H: B \to V^{open} \subset \mathbf{R}^m$ and

$$H \circ F \circ G^{-1}(x_1, ..., x_n) = (x_1, ..., x_k, 0, ..., 0)$$