2.7

Let $A_{m \times n}=\left(\begin{array}{c}\mathbf{r}_{1} \\ \mathbf{r}_{2} \\ \ldots \\ \mathbf{r}_{m}\end{array}\right)=\left(\begin{array}{llll}\mathbf{c}_{1} & \mathbf{c}_{2} & \ldots & \mathbf{c}_{n}\end{array}\right)$
Rank of $A=\operatorname{dim}\left(\operatorname{span}\left\{\mathbf{r}_{1}, \ldots, \mathbf{r}_{m}\right\}\right)=\operatorname{dim}\left(\operatorname{span}\left\{\mathbf{c}_{1}, \ldots, \mathbf{c}_{m}\right\}\right)$
$=$ maximum order of any nonvanishing minor determinant.
$\operatorname{Ex}:\left(\begin{array}{cccc}1 & 2 & 3 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 5 & 6\end{array}\right) \sim\left(\begin{array}{cccc}1 & 3 & 2 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 5 & 0 & 6\end{array}\right)$
Let $F: U \subset \mathbf{R}^{n} \rightarrow \mathbf{R}^{m} \in C^{1}$.
Rank of F at $x=\operatorname{rank}$ of $D F(x)$
F has rank k if F has rank k at each x.
Det : $M^{n \times m} \rightarrow \mathbf{R}$ is a continuous function.
Suppose rank $D F(a)=k$ implies there exists V open such that $a \in V$ and $D F(x) \geq k$ for all $x \in V$

Ex: $F\left(x_{1}, x_{2}\right)=\left(x_{1} x_{2}+5, x_{1}+x_{2}-3\right)$
$D F=\left(\begin{array}{cc}x_{2} & x_{1} \\ 1 & 1\end{array}\right)$

Rank Theorem: Suppose $A_{0} \subset \mathbf{R}^{n}, B_{0} \subset \mathbf{R}^{m}, F: A_{0} \rightarrow B_{0} \in C^{1}$ $a \in A_{0}, b \in B_{0}$. Suppose rank $\mathrm{F}=k$.

Then there exists $A^{\text {open }} \subset A_{0}$ such that $a \in A$ and $B^{\text {open }} \subset B_{0}$ such that $b \in B$ and G, H, C^{r} diffeomorphisms
such that $G: A \rightarrow U^{\text {open }} \subset \mathbf{R}^{n}, H: B \rightarrow V^{\text {open }} \subset \mathbf{R}^{m}$ and

$$
H \circ F \circ G^{-1}\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}, \ldots, x_{k}, 0, \ldots, 0\right)
$$

