Ex: $P^{n}(\mathbf{R})=\mathbf{R} P^{n}=\mathbf{R} P^{n}=\left(\mathbf{R}^{n+1}-\{\mathbf{0}\}\right) /(\mathbf{x} \sim t \mathbf{x})$
$=n$-dimensional real projective space is a smooth manifold.

Claim: $\mathbf{R} P^{n}$ is 2nd countable.

We will use
Lemma: If \sim is open and if X has a countable basis, then X / \sim has a countable basis.
[We will define a map which takes $\mathbf{y} \in[\mathbf{x}]$ to $t \mathbf{y} \in[\mathbf{x}]$]
Let $\phi_{t}: \mathbf{R}^{n+1}-\{\mathbf{0}\} \rightarrow \mathbf{R}^{n+1}-\{\mathbf{0}\}, \phi_{t}(\mathbf{x})=t \mathbf{x}$.
ϕ_{t} is invertible with inverse $\phi_{t}^{-1}=\phi_{\frac{1}{t}}$.
Since ϕ_{t} and ϕ_{t}^{-1} are C^{1} (as well as C^{∞}), ϕ_{t} is a homeomorphism.
Let U be open in $\mathbf{R}^{n+1}-\{\mathbf{0}\}$. Then $\phi_{t}(U)$ is open in $\mathbf{R}^{n+1}-\{\mathbf{0}\}$.
Thus $\pi^{-1}([U])=\cup_{t \in \mathbf{R}} \phi_{t}(U)$ is open in $\mathbf{R}^{n+1}-\{\mathbf{0}\}$.
Thus $[U]$ is open in $\mathbf{R} P^{n}$. Hence \sim is open.
Since \mathbf{R}^{n} is 2nd countable, $\mathbf{R} P^{n}$ is 2nd countable.

Claim R P^{n} is Hausdorff

We will use
Lemma: Let \sim be open. Then $\{(x, y) \mid x \sim y\}$ is closed in $X \times X$ iff X / \sim is Hausdorff.
[We will show that $\{(x, y) \mid x \sim y\}=f^{-1}(\{0\})$ for some continuous function $f . x \sim y$ implies $x_{i}=t y_{i}$. Thus $\frac{x_{i}}{y_{i}}=\frac{x_{j}}{y_{j}}$. Hence $x_{i} y_{j}-y_{i} x_{j}=0$ for all i, j.]

Let $f: \mathbf{R}^{n+1}-\{\mathbf{0}\} \times \mathbf{R}^{n+1}-\{\mathbf{0}\} \rightarrow \mathbf{R}$,
$f\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)=\Sigma_{i \neq j}\left(x_{i} y_{j}-y_{i} x_{j}\right)^{2}$.
f is C^{1} (all partials of f exist and are continuous). Thus f is continuous.

Suppose $\mathbf{y}=t \mathbf{x}$, then
$f\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)=\Sigma_{i \neq j}\left(x_{i} t x_{j}-t x_{i} x_{j}\right)^{2}=0$.
Suppose $f\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)=\Sigma_{i \neq j}\left(x_{i} y_{j}-y_{i} x_{j}\right)^{2}=0$. Then $x_{i} y_{j}-y_{i} x_{j}=0$ for all i, j. Since $\mathbf{x} \neq \mathbf{0}$, there exists i_{0} such that $x_{i_{0}} \neq 0$. Thus $y_{j}=\frac{y_{i_{0}}}{x_{i_{0}}} x_{j}$ and $\mathbf{y}=\frac{y_{i_{0}}}{x_{i_{0}}} \mathbf{x}$. Hence $\mathbf{x} \sim \mathbf{y}$.

Hence $f^{-1}(\{0\})=\{(x, y) \mid x \sim y\}$. Since f is continuous and $\{0\}$ is closed in $\mathbf{R},\{(x, y) \mid x \sim y\}$ is closed in $\mathbf{R}^{n+1}-\{\mathbf{0}\} \times$ $\mathbf{R}^{n+1}-\{\mathbf{0}\}$. Thus $\mathbf{R}^{n+1}-\{\mathbf{0}\} / \sim$ is Hausdorff.

We will show that $\mathbf{R} P^{n}$ is locally Euclidean by finding a (pre) atlas:

Let $V_{i}=\left\{x \in \mathbf{R}^{n+1}-\{\mathbf{0}\} \mid x_{i} \neq 0\right\} \subset \mathbf{R}^{n+1}-\{\mathbf{0}\}$
Let $F_{i}: V_{i} \rightarrow \mathbf{R}^{n}, F_{i}\left(x_{1}, \ldots, x_{n+1}\right)=\left(\frac{x_{1}}{x_{i}}, \frac{x_{2}}{x_{i}}, \ldots, \frac{x_{i-1}}{x_{i}}, \frac{x_{i+1}}{x_{i}}, \ldots, \frac{x_{n+1}}{x_{i}}\right)$

$$
=\frac{1}{x_{i}}\left(x_{1}, \ldots, \hat{x_{i}}, \ldots, x_{n+1}\right)
$$

$F_{i}(t \mathbf{x})=\left(\frac{t x_{1}}{t x_{i}}, \frac{t x_{2}}{t x_{i}}, \ldots, \frac{t x_{i-1}}{t x_{i}}, \frac{t x_{i+1}}{t x_{i}}, \ldots, \frac{t x_{n+1}}{t x_{i}}\right)$

$$
=\left(\frac{x_{1}}{x_{i}}, \frac{x_{2}}{x_{i}}, \ldots, \frac{x_{i-1}}{x_{i}}, \frac{x_{i+1}}{x_{i}}, \ldots, \frac{x_{n+1}}{x_{i}}\right)=F_{i}(\mathbf{x})
$$

Let $U_{i}=\pi\left(V_{i}\right)$ Then $\phi_{i}: U_{i} \rightarrow \mathbf{R}^{n}, \phi_{i}([\mathbf{x}])=F_{i}(\mathbf{x})$ is welldefined.

Claim: $\left(\phi_{i}, U_{i}\right)$ is a chart.
Subclaim 1: U_{i} is open in $R P^{n}$.
$\pi_{i}^{-1}\left(U_{i}\right)=\pi_{i}^{-1}\left(\pi\left(V_{i}\right)\right)=V_{i}$ [by set theory]. Hence U_{i} is open in $\mathbf{R} P^{n}$.

Subclaim 2: $\phi\left(U_{i}\right)$ is open in \mathbf{R}^{n}.
Claim: ϕ_{i} is onto.
Let $\left(x_{1}, \ldots, x_{n}\right) \in \mathbf{R}^{n} . \phi_{i}\left(\left[\left(x_{1}, \ldots, x_{i-1}, 1, x_{i}, . ., x_{n}\right]\right)=\left(x_{1}, \ldots, x_{n}\right)\right.$. Thus ϕ_{i} is onto.

Since $\phi\left(U_{i}\right)=\mathbf{R}^{n}, \phi\left(U_{i}\right)$ is open in \mathbf{R}^{n}.

Subclaim 3: ϕ_{i} is a homeomorphism.

Claim: ϕ_{i} is continuous.
Let V be open in \mathbf{R}^{n}.
Since $F_{i} \in C^{1}, F_{i}^{-1}(V)$ is open in $\mathbf{R}^{n+1}-\{\mathbf{0}\}$.
$\pi^{-1} \circ \phi_{i}^{-1}(V)=F_{i}^{-1}(V)$. Thus $\phi_{i}^{-1}(V)$ is open in U_{i} and ϕ_{i} is continuous.

Claim: ϕ_{i} is 1:1.
If $\phi_{i}([\mathbf{x}])=\phi_{i}([\mathbf{y}])$, then $\frac{x_{j}}{x_{i}}=\frac{y_{j}}{y_{i}}$ for all j. Thus $y_{i}=\frac{y_{i}}{x_{i}} x_{j}$ and thus $\mathbf{y}=\frac{y_{i}}{x_{i}} \mathbf{x}$. Thus ϕ_{i} is 1:1.

Since ϕ_{i} is 1:1 and onto, ϕ_{i}^{-1} exists.

Claim: $\phi_{i}^{-1}: \mathbf{R}^{n} \rightarrow \mathbf{R} P^{n}$ is continuous.
$\phi_{i}^{-1}\left(x_{1}, \ldots, x_{n}\right)=\left[\left(x_{1}, \ldots, x_{i-1}, 1, x_{i}, . ., x_{n}\right)\right]$.
Let $f_{i}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n+1}, f_{i}(\mathbf{x})=\left(x_{1}, \ldots, x_{i-1}, 1, x_{i}, \ldots, x_{n}\right) . f_{i}$ is C^{1} and hence continuous.
$\pi \circ f(\mathbf{x})=\left[\left(x_{1}, \ldots, x_{i-1}, 1, x_{i}, . ., x_{n}\right)\right]=\phi_{i}^{-1}\left(x_{1}, \ldots, x_{n}\right)$.
Since π and f are continuous, $\phi_{i}^{-1}: \mathbf{R}^{n} \rightarrow \mathbf{R} P^{n}$ is continuous.
Thus $\left(\phi_{i}, U_{i}\right)$ is a chart.
Claim: $\left\{\left(\phi_{i}, U_{i}\right) \mid i=1, \ldots, n+1\right\}$ is a (pre) atlas for $\mathbf{R} P^{n}$. $\mathbf{R}^{n+1}-\{\mathbf{0}\}=\cup_{i=1}^{n+1} V_{i}$. Thus $\mathbf{R} P^{n}=\cup_{i=1}^{n+1} U_{i}$.

Claim: $\phi_{j} \circ \phi_{i}^{-1}: \phi_{i}\left(U_{i} \cap U_{j}\right) \rightarrow \phi_{i}\left(U_{i} \cap U_{j}\right)$ is smooth.
Suppose $j<i$.
$\begin{aligned} \phi_{j}\left(\phi_{i}^{-1}\left(x_{1}, \ldots, x_{n}\right)\right)=\phi_{j}\left(\left[x_{1}, \ldots, x_{i-1}\right.\right. & \left.\left., 1, x_{i}, \ldots, x_{n}\right]\right) \\ & =\left(\frac{x_{1}}{x_{j}}, \ldots, \frac{x_{i-1}}{x_{j}}, \frac{1}{x_{j}}, \frac{x_{i}}{x_{j}}, \ldots, \frac{x_{n}}{x_{j}}\right)\end{aligned}$
Since all the components of $\phi_{j} \circ \phi_{i}^{-1}$ are rational functions with non-vanishing denominators ($\mathbf{0}$ is not in the domain of $\phi_{j} \circ \phi_{i}^{-1}$), $\phi_{j} \circ \phi_{i}^{-1}$ is smooth.

Similarly $\phi_{j} \circ \phi_{i}^{-1}$ is smooth when $j>i$.
Thus $\left\{\left(\phi_{i}, U_{i}\right) \mid i=1, \ldots, n+1\right\}$ is a (pre) atlas for $\mathbf{R} P^{n}$, and $\mathbf{R} P^{n}$ is a smooth manifold.

