Chapter 1 all sections
1.3

Defn: M is locally Euclidean of dimension n if for all $p \in M$, there exists an open set U_{p} such that $p \in U_{p}$ and there exists a homeomorphism $f_{p}: U_{p} \rightarrow V_{p}$ where $V_{p} \subset \mathbf{R}^{n}$.
$\left(U_{p}, f\right)$ is a coordinate nbhd of p.
Let $q \in U \subset M . f(q)=\left(f_{1}(q), f_{2}(q), \ldots, f_{n}(q)\right) \in \mathbf{R}^{n}$ are the coordinates of q.
f_{i} is the ith coordinate function
Defn 3.1: An n-manifold, M, is a topological space with the following properties:
1.) M is locally Euclidean of dimension n.
2.) M is Hausdorff.
3.) M has a countable basis.
1.4

Let upper half-space, $H^{n}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbf{R}^{n} \mid x_{n} \geq 0\right\}$,
$\partial H^{n}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n-1}, 0\right) \in \mathbf{R}^{n}\right\} \sim \mathbf{R}^{n-1}$
M is a manifold with boundary if it is Hausdorff, has a countable basis, and if for all $p \in U$, there exists an open set U_{p} such that $p \in U_{p}$ and there exists a homeomorphism $f: U_{p} \rightarrow V_{p}$ one of the following holds:
i.) $V_{p} \subset H^{n}-\partial H^{n}$ (p is an interior point) or
ii.) $V_{p} \subset H^{n}$ and $f(p) \in \partial H^{n}$ (p is a boundary point).
$\partial M=$ set of all boundary points of M is an (n-1)-dimensional manifold.
1.5

Ex: $P^{n}(\mathbf{R})=\mathbf{R} P^{n}=\mathbf{R} P^{n}=\left(\mathbf{R}^{n}-\{\mathbf{0}\}\right) /(\mathbf{x} \sim t \mathbf{x})$
$=n$-dimensional real projective space.
$T(M)=\cup_{p \in M} T_{p}(M)$

Ch 2: all sections

2.1

Defn: Let $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$. Define $g_{i j}: \mathbf{R}^{1} \rightarrow \mathbf{R}^{1}$,
$g_{i j}(t)=f_{i}\left(x_{1}, \ldots, x_{j-1}, t, x_{j+1}, \ldots, x_{n}\right)$. If g is differentiable at a, then the partial derivative of f_{i} is defined by

$$
\begin{aligned}
\frac{\partial f_{i}}{\partial x_{j}}(\mathbf{a}) & =\lim _{h \rightarrow 0} \frac{f_{i}\left(a_{1}, \ldots, a_{j-1}, a_{j}+h, a_{j+1}, \ldots, a_{n}\right)-f_{i}\left(a_{1}, \ldots, a_{j-1}, a_{j}, a_{j+1}, \ldots, a_{n}\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{f_{i}\left(\mathbf{a}+h \mathbf{e}_{\mathbf{j}}\right)-f_{i}(\mathbf{a})}{h}
\end{aligned}
$$

Defn: Suppose $A \subset \mathbf{R}^{n}, f: A \rightarrow \mathbf{R}^{m}$.
f is said to be differentiable at a point a if there exists an open ball V such that $a \in V \subset A$ and a linear function T such that

$$
\begin{aligned}
& \lim _{\mathbf{h} \rightarrow \mathbf{0}} \frac{\|f(\mathbf{a}+\mathbf{h})-f(\mathbf{a})-T(\mathbf{h})\|}{\|\mathbf{h}\|}=0 \\
& \lim _{\mathbf{x} \rightarrow \mathbf{a}} \frac{\|f(\mathbf{x})-f(\mathbf{a})-T(\mathbf{x}-\mathbf{a})\|}{\|\mathbf{x}-\mathbf{a}\|}=0
\end{aligned}
$$

OR equivalently,
f is differentiable at \mathbf{a} if and only if there is a matrix T and a function $\epsilon: R^{n} \rightarrow R^{m}$ such that $\lim _{\mathbf{h} \rightarrow 0} \epsilon(\mathbf{h})=\mathbf{0}$ and

$$
f(\mathbf{a}+\mathbf{h})-f(\mathbf{a})=T(\mathbf{h})+\|\mathbf{h}\| \epsilon(\mathbf{h})
$$

Or equivalently, there exists an m-tuple, $R(\mathbf{x}, \mathbf{a})=\left(r_{1}(\mathbf{x}, \mathbf{a}), r_{2}(\mathbf{x}, \mathbf{a}), \ldots, r_{m}(\mathbf{x}, \mathbf{a})\right.$ such that $\lim _{\mathbf{x} \rightarrow a}\|R(\mathbf{x}, \mathbf{a})\|=0$ and

$$
f(\mathbf{x})=f(\mathbf{a})+T(\mathbf{x}-\mathbf{a})+\|\mathbf{x}-\mathbf{a}\| R(\mathbf{x}, \mathbf{a})
$$

Defn: Let V be a nonempty open subset of $\mathbf{R}^{n}, f: V \rightarrow \mathbf{R}^{m}, p \in \mathbf{N}$.
i.) f is C^{p} on V is each partial derivative of order $k \leq p$ exists and is continuous on V.
ii.) f is C^{∞} (or smooth) on V if f is C^{p} on V for all $p \in \mathbf{N}$ (f is smooth).
iii.) f is C^{ω} (or analytic) on V if for all $a \in V$, near a, each component function can be written as a power series (e.g. if $f: \mathbf{R} \rightarrow \mathbf{R}^{m}, f(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\ldots$ (its Taylor series)).

Defn: The Jacobian matrix of f at a is

$$
\left[\frac{\partial f_{i}}{\partial x_{j}}(\mathbf{a})\right]_{m \times n}=\left[\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}}(\mathbf{a}) & \cdots & \frac{\partial f_{1}}{\partial x_{n}}(\mathbf{a}) \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot \\
\frac{\partial f_{m}}{\partial x_{1}}(\mathbf{a}) & \cdots & \frac{\partial f_{m}}{\partial x_{n}}(\mathbf{a})
\end{array}\right]
$$

2.3
$T_{\mathbf{a}}\left(\mathbf{R}^{n}\right)=\left\{(\mathbf{a}, \mathbf{x}) \mid \mathbf{x} \in \mathbf{R}^{n}\right\}, \phi(\mathbf{a x})=\mathbf{x}-\mathbf{a}$,
canonical basis $=\left\{\phi^{-1}\left(\mathbf{e}_{i}\right) \mid i=1, \ldots, n\right\}$
Let $x(t): \mathbf{R} \rightarrow \mathbf{R}^{n}$, a C^{1} curve such that $x(0)=\mathbf{a}$
$T_{\mathbf{a}}\left(\mathbf{R}^{n}\right)=\left\{[x(t)] \mid x \in C^{1}, x(0)=\mathbf{a}\right\}$ where $x(t) \sim y(t)$ if $x_{i}^{\prime}(t)=y_{i}^{\prime}(t)$ for $t \in(-\epsilon, \epsilon)$
Let $f([x(t)])=\mathbf{x}^{\prime}(0)=\left(x_{1}^{\prime}(0), \ldots, x_{n}^{\prime}(0)\right)$, then
$[x(t)]+[y(t)]=f^{-1}\left(x^{\prime}(0)+y^{\prime}(0)\right)$ and $\alpha[x(t)]=f^{-1}\left(\alpha x^{\prime}(0)\right)$
Let $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ and let $\mathbf{v} \in R^{n}$ such that $\|\mathbf{v}\|=1$
The directional derivative of f at \mathbf{a} in the direction of \mathbf{v} is $D_{\mathbf{v}} f(\mathbf{a})=\lim _{h \rightarrow 0} \frac{f(\mathbf{a}+h \mathbf{v})-f(\mathbf{a})}{h}$ $=D[f(\mathbf{a}+t \mathbf{v})]_{0}=D f_{\mathbf{a}} \mathbf{v}=D f_{\mathbf{a}} \cdot \mathbf{v}=\left.\left(\frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{n}}\right)\right|_{a} \cdot \mathbf{v}=\nabla f \cdot v$
2.4
$C^{\infty}(a)=\left\{[f]: X \subset \mathbf{R}^{n} \rightarrow \mathbf{R} \in C^{\infty} \mid a \in \operatorname{dom} f\right\}$
where $f \sim g$ if $\exists U^{\text {open }}$ s.t. $\mathbf{a} \in U$ and $f(x)=g(x) \forall x \in U$.
If $X_{\mathbf{a}}=\sum_{i=1}^{n} \xi_{i} E_{i \mathbf{a}}$, then $X_{\mathbf{a}}^{*}: C^{\infty}(\mathbf{a}) \rightarrow \mathbf{R}, X_{\mathbf{a}}^{*}(f)=\left.\sum_{i=1}^{n} \xi_{i} \frac{\partial f}{\partial x_{i}}\right|_{\mathbf{a}}$
Note $E_{i \mathbf{a}}^{*}=\left.\frac{\partial}{\partial x_{i}}\right|_{\mathbf{a}}$
The directional derivative of f at \mathbf{a} in the direction of $X_{\mathbf{a}}=X_{\mathbf{a}}^{*}(f)$.
Let $\mathcal{D}(a)=\left\{D: C^{\infty}(\mathbf{a}) \rightarrow \mathbf{R} \mid D\right.$ is linear and satisfies the Leibniz rule $\}$
$D \in \mathcal{D}(a)$ is called a derivation
$j: T_{\mathbf{a}}\left(\mathbf{R}^{n}\right) \rightarrow \mathcal{D}(a), j\left(X_{\mathbf{a}}\right)=X_{\mathbf{a}}^{*}$ is an isomorphism.

Defn: A vector field is a function, $\mathcal{V}: U \rightarrow \cup_{\mathbf{a} \in U} T_{\mathbf{a}}\left(\mathbf{R}^{n}\right)$, such that $\mathcal{V}(\mathbf{a}) \in T_{\mathbf{a}}\left(\mathbf{R}^{n}\right)$
Defn: A vector field is smooth if its components relative to the canonical basis $\left\{E_{i \mathbf{a}} \mid i=\right.$ $1, \ldots, n\}$ are smooth.

Defn: A field of frames is a set of vector fields $\left\{\mathcal{V}_{1}, \ldots, \mathcal{V}_{2}\right\}$ such that $\left\{\mathcal{V}_{1}(\mathbf{a}), \ldots, \mathcal{V}_{2}(\mathbf{a})\right\}$ forms a basis for $T_{\mathbf{a}}\left(\mathbf{R}^{n}\right)$ for all \mathbf{a}.

Note we can turn a vector field into a derivation by making the following definition:
If $\mathcal{V}(\mathbf{a})=\alpha_{i}(\mathbf{a}) E_{i \mathbf{a}}$, then $\mathcal{V}: C^{\infty} \rightarrow C^{\infty}, \mathcal{V}(f)(\mathbf{a})=\sum_{i=1}^{n} \alpha_{i}(\mathbf{a}) \frac{\partial f}{\partial x_{i}}(\mathbf{a})$ is a derivation.
2.6
F is a C^{r}-diffeomorphism if
(1) F is a homeomorphism
(2) $F, F^{-1} \in C^{r}$
F is a diffeomorphism if F is a C^{∞}-diffeomorphism.
2.7
Rank of $A=\operatorname{dim}\left(\operatorname{span}\left\{\mathbf{r}_{1}, \ldots, \mathbf{r}_{m}\right\}\right)=\operatorname{dim}\left(\operatorname{span}\left\{\mathbf{c}_{1}, \ldots, \mathbf{c}_{m}\right\}\right)$
$=$ maximum order of any nonvanishing minor determinant.
Rank of $F: U \subset \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ at $x=\operatorname{rank}$ of $D F(x)$
F has rank k if F has rank k at each x.
Chapter 3: 1-3
$3.1=$ Randell 1.1
Note: This is one place where Boothby's and Randell's definitions differ: Boothby's atlas $=$ Randell's pre-atlas, Boothby's maximal atlas $=$ Randell's atlas. On exams, I will use pre-atlas and maximal atlas when it makes a difference.

Defn: (φ, U) is a chart or coordinate neighborhood if $\varphi: U \rightarrow U^{\prime}$ is a homeomorphism, where U is open in M and U^{\prime} is open in \mathbf{R}^{n}.
(φ, U) is a coordinate $n b h d$ of p.

Let $q \in U \subset M . \varphi(q)=\left(\varphi_{1}(q), \varphi_{2}(q), \ldots, \varphi_{n}(q)\right) \in \mathbf{R}^{n}$ are the coordinates of q. φ_{i} is the ith coordinate function.

Defn: Two charts, (φ, U) and (ψ, V) are C^{∞} compatible if the function $\varphi \psi^{-1}: \psi(U \cap V) \rightarrow$ $\varphi(U \cap V)$ is a diffeomorphism.

Defn: A (pre) atlas or differentiable or smooth structure on M is a collection of charts on M satisfying the following two conditions:
i.) the domains of the charts form an open cover of M
ii.) Each pair of charts in the atlas is compatible.

Defn: An atlas is a (maximal or complete) atlas if it is maximal with respect to properties i) and ii).

A differential (or smooth or C^{∞}) n-manifold M is a topological n-manifold together with a maximal atlas.

3.2

Let \sim be an equivalence relation on X. Let $\pi: X \rightarrow X / \sim, \pi(x)=[x]=\{y \mid y \sim x\}$
$[A]=\cup_{a \in A}[a]$
Defn: \sim is open if $U^{\text {open }} \subset X$ implies $[U]$ open in X / \sim.
$3.3=$ Randell 1.2
Defn: Suppose $f: W \rightarrow N$ where $W \subset M$ and N are smooth manifolds. f is smooth if for all $p \in W, \exists$ charts (ϕ, U) and (φ, V) and such that $p \in U, f(p) \in V, f(U) \subset V$ and $\varphi \circ f \circ \phi^{-1}$ is smooth.

Defn: $f: M \rightarrow N$ is a diffeomorphism if f is a homeomorphism and if f and f^{-1} are smooth. M and N are diffeomorphic if there exists a diffeomorphism $f: M \rightarrow N$.

Randell Chapter 1.3

Defn: G is a topological group if
1.) $(G, *)$ is a group
2.) G is a topological space.
3.) $*: G \times G \rightarrow G, *\left(g_{1}, g_{2}\right)=g_{1} * g_{2}$, and In : $G \rightarrow G, \operatorname{In}(g)=g^{-1}$ are both continuous functions.

Defn: G is a Lie group if
1.) G is a topological group
2.) G is a smooth manifold.
3.) $*$ and $I n$ are smooth functions.

Defn: $G=$ group, $X=$ set. G acts on X (on the left) if $\exists \sigma: G \times X \rightarrow X$ such that
1.) $\sigma(e, x)=x \quad \forall x \in X$
2.) $\sigma\left(g_{1}, \sigma\left(g_{2}, x\right)\right)=\sigma\left(g_{1} g_{2}, x\right)$

Notation: $\sigma(g, x)=g x$.
Thus 1) $e x=x$; 2) $g_{1}\left(g_{2} x\right)=\left(g_{1} g_{2}\right)(x)$.
If G is a topological group and X is a topological space, then we require σ to be continuous. If G is a Lie group and X is a smooth manifold, then we require σ to be smooth.

Defn: The orbit of $x \in X=$
$G(x)=\{y \in X \mid \exists g$ such that $y=g x\}$
Defn: If G acts on X, then $X / G=X / \sim$ where $x \sim y$ iff $y \in G(x)$ iff $\exists g$ such that $y=g x$.
Defn: The action of G on X is free if $g x=x$ implies $g=e$.
Defn: G is a discrete group if
0 .) G is a group.
1.) G is countable
2.) G has the discrete topology

Defn: The action of G on M is properly discontinuous if $\forall x \in M, \exists U^{\text {open }}$ such that $x \in U$ and $U \cap g U=\emptyset \quad \forall g \in G$.

Randell 2.1

Let $p \in M$.
A germ is an equivalence class [g] where
$g^{\text {smooth }}: U \rightarrow N$, for some $U^{\text {open }}$ such that $p \in U \subset M$
and if $g_{i}: U_{i} \rightarrow N$, where $p \in U_{i}^{\text {open }} \subset M$,
then $g_{1} \sim g_{2}$ if $\exists V^{\text {open }}$ such that $p \in V \subset U_{1} \cap U_{2}$ and $g_{1}(x)=g_{2}(x) \forall x \in V$.
$G(p, N)=\left\{[g] \mid g^{\text {smooth }}: U \rightarrow N\right.$, for some $U^{\text {open }}$ such that $\left.p \in U \subset M\right\}$
$G(p)=G(p, \mathbf{R})$
Let $\alpha: I \rightarrow M$ where $I=$ an interval $\subset \mathbf{R}, \alpha(0)=p$. Note $[\alpha] \in G[0, M]$
Directional derivative of $[g]$ in direction $[\alpha]=$

$$
D_{\alpha} g=\left.\frac{d(g \circ \alpha)}{d t}\right|_{t=0} \in \mathbf{R}
$$

$T_{p}(M)=\{v: G(p) \rightarrow \mathbf{R} \mid v$ is linear and satisfies the Leibniz rule $\}$
$v \in T_{p}(M)$ is called a derivation
Given a chart (U, ϕ) at p where $\phi(p)=\mathbf{0}$, the standard basis for $T_{p}(M)=\left\{v_{1}, \ldots, v_{m}\right\}$, where $v_{i}=D_{\alpha_{i}}$ and for some $\epsilon>0, \alpha_{i}:(-\epsilon, \epsilon) \rightarrow M, \alpha_{i}(t)=\phi^{-1}(0, \ldots, t, \ldots, 0)$

Suppose $f^{\text {smooth }}: M \rightarrow N, f(p)=q$. The tangent (or differential) map, $d f_{p}: T_{p} M \rightarrow$ $T_{q} N,\left(d f_{p}(v)\right)=v([g \circ f])$ for $v \in T_{p} M,[g] \in G(q)$
I.e., $d f_{p}$ takes the derivation $(v: G(p) \rightarrow \mathbf{R}) \in T_{p} M$ to the derivation in $T_{q} N$ which takes the germ $[g] \in G(q)$ to the real number $v([g \circ f])$.

