$T_p(M) = \{ v : G(p) \to \mathbf{R} \mid v \text{ is linear and satisfies the Leibniz rule } \}$

 $G(p) = \{[g] \mid g^{smooth} : U \to \mathbf{R}, \text{ for some } U^{open} \text{ such that } p \in U \subset M\}$ is an algebra over \mathbf{R} .

 $v \in T_p(M)$ is called a *derivation*

The directional derivative of [g] in direction $[\alpha] =$

$$D_{\alpha}g = \frac{d(g \circ \alpha)}{dt}|_{t=0} = g'(\alpha(0))\alpha'(0) \in \mathbf{R}$$

Properties:

 D_{α} is linear and satisfies the Leibniz rule. i.e,

1a.) $D_{\alpha}(g+h) = D_{\alpha}g + D_{\alpha}h$ 2.) $D_{\alpha}(g \cdot h) = D_{\alpha}g \cdot h(p) + g(p) \cdot D_{\alpha}h$ Thus $D_{\alpha} \in T_p(M)$

Thm: Let M be an m-manifold, then $T_p(M)$ is an m-dimensional real vector space. $[(c_1v + c_2w)(f) = c_1v(f) + c_2w(f)].$

Take a chart (U, ϕ) at p where $\phi(p) = \mathbf{0}$,

The standard basis for $T_p(M)$ w.r.t. $(U, \phi) = \{v_1, ..., v_m\},\$

where $v_i = D_{\alpha_i}$ and

$$\alpha_i: (-\epsilon, \epsilon) \to M, \ \alpha_i(t) = \phi^{-1}(0, ..., t, ..., 0) \text{ for some } \epsilon > 0.$$

Prop: $\{v_1, ..., v_m\}$ are linearly independent.

Proof: Evaluate v_i at a "projection map".

Thm: $\{v_1, ..., v_m\}$ span $T_p(M)$.

If $v \in T_p(M)$, then $v = \sum_{i=1}^m a_i v_i$ where $a_i = v([\pi_i \circ \phi])$

Prop: If v is a derivation, and f is constant, then v(f) = 0.

Suppose $f^{smooth}: M \to N, f(p) = q.$

The tangent (or differential) map,

$$df_p: T_pM \to T_qN$$

 $df_p(v) =$ the derivation which takes $[g] \in G(q)$ to the real number $v([g \circ f])$

I.e., df_p takes the derivation $(v: G(p) \to \mathbf{R}) \in T_p M$

to the derivation in $T_q N$ which takes

the germ $[g] \in G(q)$ to the real number $v([g \circ f])$.

Suppose $f: M \to N$ is smooth. Then $f^*: G(q) \to G(p)$ is a homomorphism.

Let V be a real vector space. Then the dual space, $V^* = \{f : V \to \mathbf{R} \mid f \text{ is linear }\}$

Proposition: With respect to this choice of basis, the matrix of $d_p f: T_p M \to T_q N$ is $(\frac{\partial F_i}{\partial x_j})_{\varphi_{(p)}}$, where x_j are coordinates in \mathbf{R}^m and $F_i = (F_1, \dots, F_n)$ in coordinates for \mathbf{R}^n .

Here are some more properties of $d_p f$ and $T_p M$: Let $f: M \to N$ be smooth.

1.) If $f: M \to N$ is a diffeomorphism, the $d_p f$ is an isomorphism, for all $p \in M$.

2.) If $d_p f = 0$ for all $p \in M$ iff f is a constant map.

3.) If $id: M \to M$, id(x) = x, then $d_p(id) = I_m$

4.) $d_r(f \circ h) = d_p(f) \circ d_r(h)$ where p = h(r).

5.) If $N \cong M/G$, where G is a discrete Lie group acting properly discontinuously on M, and $f: M \to M/G$ is the orbit map, the $d_p f$ is an isomorphism for all p.

6.)
$$T_{(p,q)}(M \times N) \cong T_p(M) \times T_q(N).$$

Rank Theorem: Suppose $A_0 \subset \mathbf{R}^n$, $B_0 \subset \mathbf{R}^m$, $F : A_0 \to B_0 \in C^1$ $a \in A_0, b \in B_0$. Suppose rank $\mathbf{F} = k$.

Then there exists $A^{open} \subset A_0$ such that $a \in A$ and $B^{open} \subset B_0$ such that $b \in B$ and G, H, C^r diffeomorphisms

such that $G: A \to U^{open} \subset \mathbf{R}^n, H: B \to V^{open} \subset \mathbf{R}^m$ and

$$H \circ F \circ G^{-1}(x_1, ..., x_n) = (x_1, ..., x_k, 0, ..., 0)$$

Proposition: rank DF(a) = k implies there exists V open such that $a \in V$ and $DF(x) \ge k$ for all $x \in V$

Proof:

Rank of $A = dim(span\{\mathbf{r}_1, ..., \mathbf{r}_m\}) = dim(span\{\mathbf{c}_1, ..., \mathbf{c}_m\})$ = maximum order of any nonvanishing minor determinant.

Use determinant is a continuous function.

Thm 6.4 (Inverse Function Theorem): Suppose $F : W^{open} \subset \mathbf{R}^n \to \mathbf{R}^n \in C^r$. Suppose for $a \in W$, $det(DF_a) \neq 0$. Then there exists U such that $a \in U^{open}$, V = F(U) is open, and $F : U \to V$ is a C^r -diffeomorphism. Moreover, for $x \in U$ and y = F(x), $DF_u^{-1} = (DF_x)^{-1}$