$T_{p}(M)=\{v: G(p) \rightarrow \mathbf{R} \mid v$ is linear and satisfies the Leibniz rule \}
$G(p)=\left\{[g] \mid g^{\text {smooth }}: U \rightarrow \mathbf{R}\right.$, for some $U^{\text {open }}$ such that $p \in$ $U \subset M\}$ is an algebra over \mathbf{R}.
$v \in T_{p}(M)$ is called a derivation
The directional derivative of $[g]$ in direction $[\alpha]=$

$$
D_{\alpha} g=\left.\frac{d(g \circ \alpha)}{d t}\right|_{t=0}=g^{\prime}(\alpha(0)) \alpha^{\prime}(0) \in \mathbf{R}
$$

Properties:

D_{α} is linear and satisfies the Leibniz rule. i.e,
1a.) $D_{\alpha}(g+h)=D_{\alpha} g+D_{\alpha} h$
1b.) $D_{\alpha}(c g)=c D_{\alpha} g$
2.) $D_{\alpha}(g \cdot h)=D_{\alpha} g \cdot h(p)+g(p) \cdot D_{\alpha} h$

Thus $D_{\alpha} \in T_{p}(M)$
Thm: Let M be an m-manifold, then $T_{p}(M)$ is an m-dimensional real vector space. $\left[\left(c_{1} v+c_{2} w\right)(f)=c_{1} v(f)+c_{2} w(f)\right]$.

Take a chart (U, ϕ) at p where $\phi(p)=\mathbf{0}$,
The standard basis for $T_{p}(M)$ w.r.t. $(U, \phi)=\left\{v_{1}, \ldots, v_{m}\right\}$,
where $v_{i}=D_{\alpha_{i}}$ and
$\alpha_{i}:(-\epsilon, \epsilon) \rightarrow M, \alpha_{i}(t)=\phi^{-1}(0, \ldots, t, \ldots, 0)$ for some $\epsilon>0$.

Prop: $\left\{v_{1}, \ldots, v_{m}\right\}$ are linearly independent.
Proof: Evaluate v_{i} at a "projection map".
Thm: $\left\{v_{1}, \ldots, v_{m}\right\}$ span $T_{p}(M)$.
If $v \in T_{p}(M)$, then $v=\sum_{i=1}^{m} a_{i} v_{i}$ where $a_{i}=v\left(\left[\pi_{i} \circ \phi\right]\right)$
Prop: If v is a derivation, and f is constant, then $v(f)=0$.

Suppose $f^{\text {smooth }}: M \rightarrow N, f(p)=q$.
The tangent (or differential) map,

$$
d f_{p}: T_{p} M \rightarrow T_{q} N
$$

$d f_{p}(v)=$ the derivation which takes $[g] \in G(q)$ to the real number $v([g \circ f])$
I.e., $d f_{p}$ takes the derivation $(v: G(p) \rightarrow \mathbf{R}) \in T_{p} M$
to the derivation in $T_{q} N$ which takes
the germ $[g] \in G(q)$ to the real number $v([g \circ f])$.

Suppose $f: M \rightarrow N$ is smooth. Then $f^{*}: G(q) \rightarrow G(p)$ is a homomorphism.

Let V be a real vector space.
Then the dual space, $V^{*}=\{f: V \rightarrow \mathbf{R} \mid f$ is linear $\}$
Proposition: With respect to this choice of basis, the matrix of $d_{p} f: T_{p} M \rightarrow T_{q} N$ is $\left(\frac{\partial F_{i}}{\partial x_{j}}\right)_{\varphi_{(p)}}$, where x_{j} are coordinates in \mathbf{R}^{m} and $F_{i}=\left(F_{1}, \cdots, F_{n}\right)$ in coordinates for \mathbf{R}^{n}.

Here are some more properties of $d_{p} f$ and $T_{p} M$: Let $f: M \rightarrow N$ be smooth.
1.) If $f: M \rightarrow N$ is a diffeomorphism, the $d_{p} f$ is an isomorphism, for all $p \in M$.
2.) If $d_{p} f=0$ for all $p \in M$ iff f is a constant map.
3.) If $i d: M \rightarrow M, i d(x)=x$, then $d_{p}(i d)=I_{m}$
4.) $d_{r}(f \circ h)=d_{p}(f) \circ d_{r}(h)$ where $p=h(r)$.
5.) If $N \cong M / G$, where G is a discrete Lie group acting properly discontinuously on M, and $f: M \rightarrow M / G$ is the orbit map, the $d_{p} f$ is an isomorphism for all p.
6.) $T_{(p, q)}(M \times N) \cong T_{p}(M) \times T_{q}(N)$.

Rank Theorem: Suppose $A_{0} \subset \mathbf{R}^{n}, B_{0} \subset \mathbf{R}^{m}, F: A_{0} \rightarrow B_{0} \in C^{1}$ $a \in A_{0}, b \in B_{0}$. Suppose rank $\mathrm{F}=k$.

Then there exists $A^{\text {open }} \subset A_{0}$ such that $a \in A$ and $B^{\text {open }} \subset B_{0}$ such that $b \in B$ and G, H, C^{r} diffeomorphisms
such that $G: A \rightarrow U^{\text {open }} \subset \mathbf{R}^{n}, H: B \rightarrow V^{\text {open }} \subset \mathbf{R}^{m}$ and

$$
H \circ F \circ G^{-1}\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}, \ldots, x_{k}, 0, \ldots, 0\right)
$$

Proposition: rank $D F(a)=k$ implies there exists V open such that $a \in V$ and $D F(x) \geq k$ for all $x \in V$

Proof:
Rank of $A=\operatorname{dim}\left(\operatorname{span}\left\{\mathbf{r}_{1}, \ldots, \mathbf{r}_{m}\right\}\right)=\operatorname{dim}\left(\operatorname{span}\left\{\mathbf{c}_{1}, \ldots, \mathbf{c}_{m}\right\}\right)$
$=$ maximum order of any nonvanishing minor determinant.
Use determinant is a continuous function.
Thm 6.4 (Inverse Function Theorem): Suppose $F: W^{\text {open }} \subset$ $\mathbf{R}^{n} \rightarrow \mathbf{R}^{n} \in C^{r}$. Suppose for $a \in W, \operatorname{det}\left(D F_{a}\right) \neq 0$. Then there exists U such that $a \in U^{\text {open }}, V=F(U)$ is open, and $F: U \rightarrow V$ is a C^{r}-diffeomorphism. Moreover, for $x \in U$ and $y=F(x)$, $D F_{y}^{-1}=\left(D F_{x}\right)^{-1}$

