
Randell 3.3

Defn: A flow on M is a smooth action of the Lie group R
1

on M , σ: R
1 × M → M .

A flow is also called a dynamical system.

σ(t, m) = σt(m)

σ0(m) = m, σt ◦ σs(m) = σt+s(m) = σs ◦ σt(m)

σ−t = σ−1
t

σt : M → M is a diffeomorphism.

Ex: σ : R × R
2 → R

2, σt(x, y) = (x, y) + t(1, 2)

Defn: The orbit of x ∈ M =
R(x) = {y ∈ M | ∃t ∈ R such that y = tx}

A flow line is the smooth path αp : R → M , αp(t) = σ(t, p).

Prop: each q ∈ M lies on a unique flow line.
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“differentiating along the flow”: Given a flow σ on M ,
define sσ: M → TM by sσ(p) = (p, dαp/dt| t=0)

Proposition 3.3.3: sσ is a section of TM .

2



Randell 3.4 The bracket of two vector fields.

C∞(M) = {g | gsmooth : M → R}

Defn: A vector field or section of the tangent bundle TM
is a smooth function
s: M → TM so that π ◦ s = id [i.e., s(p) = (p, vp)].

I.e, s takes p ∈ M to the derivation vp : C∞(M) → R

Let f ∈ C∞(M)

Define sf : M → R, sf (p) = vp([f ]) where s(p) = (p, vp)

Note sf is smooth.

Thus we can think of a vector field as a function
S : C∞(M) → C∞(M), S(f) = sf

Lemma 3.4.1: For any vector field s and smooth functions
f and g on M , we have

sfg(p) = f(p) · sg(p) + sf (p) · g(p)

Proof: vp(fg) = f(p)vp(g) + vp(f)g(p)
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Lemma 3.4.2: Let S : C∞(M) → C∞(M) be linear, and
suppose S(fg)(p) = f(p) · S(g)(p) + S(f)(p) · g(p). Then
S is a vector field.

Proof: Define S(p) : C∞(M) → R to be the function
which sends f ∈ C∞(M) to S(f)(p), i.e, the function S(f)
evaluated at p.

Note that the hypothesis implies that S(p) is linear and
satisfies the Liebniz rule and hence is a derivation.

Defn: If A, B are vector fields, let AB = A ◦ B

Defn: The Lie Bracket of vector fields A and B is [A, B] =
AB − BA : C∞(M) → C∞(M).

Thm: The Lie bracket of vector fields is a vector field.
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