Randell 3.3

Defn: A flow on M is a smooth action of the Lie group \mathbf{R}^1 on M, σ : $\mathbf{R}^1 \times M \to M$.

A flow is also called a *dynamical system*.

 $\begin{aligned} \sigma(t,m) &= \sigma_t(m) \\ \sigma_0(m) &= m, \qquad \sigma_t \circ \sigma_s(m) = \sigma_{t+s}(m) = \sigma_s \circ \sigma_t(m) \\ \sigma_{-t} &= \sigma_t^{-1} \\ \sigma_t : M \to M \text{ is a diffeomorphism.} \end{aligned}$

Ex: $\sigma : \mathbf{R} \times \mathbf{R}^2 \to \mathbf{R}^2, \ \sigma_t(x, y) = (x, y) + t(1, 2)$

Defn: The *orbit* of $x \in M =$ $\mathbf{R}(x) = \{y \in M \mid \exists t \in \mathbf{R} \text{ such that } y = tx\}$

A flow line is the smooth path $\alpha_p : \mathbf{R} \to M, \, \alpha_p(t) = \sigma(t, p)$. Prop: each $q \in M$ lies on a unique flow line. "differentiating along the flow": Given a flow σ on M, define $s_{\sigma} \colon M \to TM$ by $s_{\sigma}(p) = (p, d\alpha_p/dt|_{t=0})$

Proposition 3.3.3: s_{σ} is a section of TM.

Randell 3.4 The bracket of two vector fields.

$$C^{\infty}(M) = \{g \mid g^{smooth} : M \to \mathbf{R}\}$$

Defn: A vector field or section of the tangent bundle TMis a smooth function $s: M \to TM$ so that $\pi \circ s = id$ [i.e., $s(p) = (p, v_p)$].

I.e., s takes $p \in M$ to the derivation $v_p : C^{\infty}(M) \to \mathbf{R}$ Let $f \in C^{\infty}(M)$ Define $s_f: M \to \mathbf{R}, s_f(p) = v_p([f])$ where $s(p) = (p, v_p)$

Note s_f is smooth.

Thus we can think of a vector field as a function $S: C^{\infty}(M) \to C^{\infty}(M), \ S(f) = s_f$

Lemma 3.4.1: For any vector field s and smooth functions f and g on M, we have S

$$s_{fg}(p) = f(p) \cdot s_g(p) + s_f(p) \cdot g(p)$$

Proof: $v_p(fg) = f(p)v_p(g) + v_p(f)g(p)$

Lemma 3.4.2: Let $S : C^{\infty}(M) \to C^{\infty}(M)$ be linear, and suppose $S(fg)(p) = f(p) \cdot S(g)(p) + S(f)(p) \cdot g(p)$. Then S is a vector field.

Proof: Define $S(p) : C^{\infty}(M) \to \mathbf{R}$ to be the function which sends $f \in C^{\infty}(M)$ to S(f)(p), i.e., the function S(f)evaluated at p.

Note that the hypothesis implies that S(p) is linear and satisfies the Liebniz rule and hence is a derivation.

Defn: If A, B are vector fields, let $AB = A \circ B$

Defn: The *Lie Bracket* of vector fields A and B is $[A, B] = AB - BA : C^{\infty}(M) \to C^{\infty}(M)$.

Thm: The Lie bracket of vector fields is a vector field.