Thm. $f: M \to N$ embedding implies f(M) is a submanifold of N.

Recall K is a submanifold of N if $\forall q \in K \subset N$, $\exists g^{smooth} : V^{open} \subset N \to \mathbf{R}^{n-m}, q \in V$ such that $K \cap V = g^{-1}(0)$ and rank $d_pg = n - m$

Proof. Since $f:M\to N$ embedding, $f:M\to N$ is a 1-1 immersion and

 $f: M \to f(M)$ is a homeomorphism where f(M) is a subspace of N

Take $q \in f(M)$.

Since f is 1:1, $\exists ! p \in M$ such that f(p) = q.

 $f: M \to N$ an immersion implies f has rank $m \leq n$.

Thus by the rank theorem,

Defn. Suppose $f: M \to N$ is smooth.

 $p \in M$ is a *critical point* and f(p) is a *critical value* if rank $df_p < n$.

If $p \in M$ is not a critical point, then it is a *regular* point.

If $q \in N$ is not a *critical value*, then it is a *regular value*.

Note: $q \in N$ is a regular value iff $f^{-1}(q) = \emptyset$ or $\forall p \in f^{-1}(q), df_p = n.$

Thm 2.3.13: Let q be a regular value of $f: M \to N$. Then either $f^{-1}(q) = \emptyset$ or $f^{-1}(q)$ is an (m - n)-submanifold of M.

 $Gl(n, \mathbf{R})$ is an n^2 manifold.

 $A \in Gl(n, \mathbf{R})$ is orthogonal if $A^t A = I$.

The orthogonal group = $O(n) = \{A \in Gl(n, \mathbf{R}) \mid A^t A = I\}$

The special orthogonal group = $SO(n) = \{A \in O(n) \mid det(A) = 1\}$

O(n), SO(n) are subgroups of $Gl(n, \mathbf{R})$.

O(n), SO(n) are closed in $Gl(n, \mathbf{R})$. If $A \in O(n)$, then $det(A) = \pm 1$ SO(n) is open in 0(n). $s: Gl(n, \mathbf{R}) \to Gl(n, \mathbf{R}), s(A) = A^{t}A$ is smooth. Let S = the set of symmetric matrices. Then S = is an manifold.

 $s: Gl(n, \mathbf{R}) \to \mathcal{S}, \ s(A) = A^t A$ is smooth. $s^{-1}(I) =$

Claim: I is a regular value of $s : Gl(n, \mathbf{R}) \to S$, $s(A) = A^t A$.

That is, if $A \in O(n)$, $d_A S$ has rank $\frac{n(n+1)}{2}$.

$$n^2 - \frac{n(n+1)}{2} = \frac{n(n-1)}{2}.$$

Thus if I is a regular value, O(n) is an $\frac{n(n-1)}{2}$ submanifold of $Gl(n, \mathbf{R})$.