$C^{\infty}(M)=\left\{g \mid g^{\text {smooth }}: M \rightarrow \mathbf{R}\right\}$
D is a derivation iff $D: C^{\infty}(p) \rightarrow \mathbf{R}$ and D is linear and satisfies the Leibniz rule.

That is D is a derivation if $D(f) \in \mathbf{R}$,
$D(c f)=c D(f), D(f+g)=D(f)+D(g)$,
$D(f g)=f(p) D g+g(p) D f$
Defn: A vector field or section of the tangent bundle TM is a smooth function
$s: M \rightarrow T M$ so that $\pi \circ s=i d\left[\right.$ i.e., $\left.s(p)=\left(p, v_{p}\right)\right]$.
Ex: If $M=\mathbf{R}$, let $s(p)=\left(p,\left(\frac{d}{d x}\right)_{p}\right)$
Sometimes we will drop the p and write $s(p)=\left(\frac{d}{d x}\right)_{p}$
Let $f \in C^{\infty}(\mathbf{R})$. For all $p \in \mathbf{R}, s(p)(f)=\left(\frac{d f}{d x}\right)_{p}=\frac{d f}{d x}(p)$
Define $s_{f}: \mathbf{R} \rightarrow \mathbf{R}, s_{f}(p)=\frac{d f}{d x}(p) . \quad$ I.e., $s_{f}=\frac{d f}{d x}$
Note s_{f} is smooth.
Lemma 3.4.1: For any vector field s and smooth functions f and g on M, we have

$$
s_{f g}(p)=f(p) \cdot s_{g}(p)+s_{f}(p) \cdot g(p)
$$

Proof: $\frac{d(f g)}{d x}(p)=f(p) \frac{d g}{d x}(p)+\frac{d f}{d x}(p) g(p)$
We can think of a vector field as a function
$S: C^{\infty}(M) \rightarrow C^{\infty}(M), S(f)=s_{f}$
Ex: $S: C^{\infty}(\mathbf{R}) \rightarrow C^{\infty}(\mathbf{R}), S(f)=\frac{d f}{d x} . \quad$ I.e., $S=\frac{d}{d x}$

Ex: If $M=\mathbf{R}$, then $s(p)=a(p)\left(\frac{d}{d x}\right)_{p}$ where $a: \mathbf{R} \rightarrow \mathbf{R}$ is a smooth function.

Let $f \in C^{\infty}(\mathbf{R})$.
For all $p \in \mathbf{R}, s(p)(f)=a(p)\left(\frac{d f}{d x}\right)_{p}=a(p) \frac{d f}{d x}(p)$
Define $s_{f}: \mathbf{R} \rightarrow \mathbf{R}, s_{f}(p)=a(p) \frac{d f}{d x}(p) . \quad$ I.e., $s_{f}=a \frac{d f}{d x}$
Note s_{f} is smooth.
Lemma 3.4.1: For any vector field s and smooth functions f and g on M, we have

$$
s_{f g}(p)=f(p) \cdot s_{g}(p)+s_{f}(p) \cdot g(p)
$$

Proof: $a(p) \frac{d(f g)}{d x}(p)=a(p) f(p) \frac{d g}{d x}(p)+a(p) \frac{d f}{d x}(p) g(p)$
We can think of a vector field as a function
$S: C^{\infty}(M) \rightarrow C^{\infty}(M), S(f)=s_{f}$
Ex: $S: C^{\infty}(\mathbf{R}) \rightarrow C^{\infty}(\mathbf{R}), S(f)=a \frac{d f}{d x}$ I.e., $S=a \frac{d}{d x}$

In the above we used the charts $\phi_{p}: \mathbf{R} \rightarrow \mathbf{R}, \phi_{p}(x)=x-p$.
Thus $\left.\frac{d\left(g\left(\phi_{p}^{-1}(x)\right)\right)}{d x}\right|_{x=0}=\left.\frac{d(g(x+p))}{d x}\right|_{x=0}=\frac{d g}{d x}(p)$
Note $\phi_{0}(x)=\phi_{p}(x+p)$.
Thus $\left.\frac{d\left(\phi_{p}\left(\phi_{0}^{-1}(x)\right)\right.}{d x}\right|_{x=0}=\left.\frac{d\left(\phi_{p}\left(\phi_{p}^{-1}(x+p)\right)\right)}{d x}\right|_{x=0}=\left.\frac{d(x+p)}{d x}\right|_{x=0}=1$

If we use the chart $\psi_{q}: \mathbf{R} \rightarrow \mathbf{R}, \psi_{q}(x)=q-x$.
Then $\left.\frac{d\left(g\left(\psi_{p}^{-1}(x)\right)\right)}{d x}\right|_{x=0}=\left.\frac{d(g(p-x))}{d x}\right|_{x=0}=\frac{-d g}{d x}(p)$
Note $\left.\frac{d\left(\psi_{q}(x+p)\right)}{d x}\right|_{x=0}=\left.\frac{d \psi_{q}}{d x}\right|_{p}=\left.\frac{d(q-x)}{d x}\right|_{p}=-1$
Example of a non-smooth vector field on \mathbf{R} :
If $p \geq 0$, let $s(p)=\left(p,\left(\frac{d}{d x}\right)_{p}\right)$
[i.e., the basis element of $T_{p}(\mathbf{R})$ from ϕ_{p}]
If $p<0$, let $s(p)=\left(p,\left(-\frac{d}{d x}\right)_{p}\right)$
[i.e., the basis element of $T_{p}(\mathbf{R})$ from ψ_{p}]

Ex: If $M=\mathbf{R}^{2}$, then $s(\mathbf{p})=a(\mathbf{p})\left(\frac{\partial}{\partial x}\right)_{\mathbf{p}}+b(\mathbf{p})\left(\frac{\partial}{\partial y}\right)_{\mathbf{p}}$ where $a, b: \mathbf{R}^{2} \rightarrow \mathbf{R}$ are smooth functions.

Ex: Let $\left\{\left(\frac{\partial}{\partial x_{1}}\right)_{p}, \ldots,\left(\frac{\partial}{\partial x_{m}}\right)_{p}\right\}$ be a basis for $T_{p}(M)$.
Let $s: M \rightarrow T M, s(p)=\left(p, \Sigma_{i=1}^{m} a_{i}(p)\left(\frac{\partial}{\partial x_{i}}\right)_{p}\right)$

