6.6 Mobius inversions

Let X be a finite set.

Let $\mathcal{F} = \{ f : X \times X \to \mathcal{R} \mid \text{ if } f(x, y) \neq 0, \text{ then } x \leq y \}$

Define the operation * on \mathcal{F} by

$$f * g = \begin{cases} \sum_{\{z \mid x \le z \le y\}} f(x, z) g(z, y) & \text{if } x \le y \\ 0 & \text{otherwise} \end{cases}$$

Note \ast is associative: $f\ast(g\ast h)=(f\ast g)\ast h$

Let $\delta = \begin{cases} 1 & x = y \\ 0 & otherwise \end{cases}$

Note δ acts as the identity for *: $f*\delta=\delta*f=f$

If $f(x,x) \neq 0$ for all $x \in X$, then f is invertible: There exist f^{-1} such that $f * f^{-1} = f^{-1} * f = \delta$. In this case,

$$f^{-1}(x,x) = \frac{1}{f(x,x)}$$
$$f^{-1}(x,y) = -\sum_{\{z : x \le z < y\}} f^{-1}(x,z) \frac{f(z,y)}{f(y,y)} \text{ for } x < y,$$
$$f^{-1}(x,y) = 0 \text{ if } x \le y.$$