6.6 Mobius inversions

Let X be a finite set.
Let $\mathcal{F}=\{f: X \times X \rightarrow \mathcal{R} \mid$ if $f(x, y) \neq 0$, then $x \leq y\}$
Define the operation * on \mathcal{F} by

$$
f * g= \begin{cases}\sum_{\{z \mid x \leq z \leq y\}} f(x, z) g(z, y) & \text { if } x \leq y \\ 0 & \text { otherwise }\end{cases}
$$

Note $*$ is associative: $f *(g * h)=(f * g) * h$
Let $\delta= \begin{cases}1 & \mathrm{x}=\mathrm{y} \\ 0 & \text { otherwise }\end{cases}$
Note δ acts as the identity for $*: f * \delta=\delta * f=f$
If $f(x, x) \neq 0$ for all $x \in X$, then f is invertible: There exist f^{-1} such that $f * f^{-1}=f^{-1} * f=\delta$. In this case,
$f^{-1}(x, x)=\frac{1}{f(x, x)}$
$f^{-1}(x, y)=-\Sigma_{\{z: x \leq z<y\}} f^{-1}(x, z) \frac{f(z, y)}{f(y, y)}$ for $x<y$,
$f^{-1}(x, y)=0$ if $x \not \leq y$.

