7.1: Sequences

Arithmetic sequence: $h_{0}, h_{0}+q, h_{0}+2 q, \ldots$

$$
h_{n}=h_{n-1}+q=h_{0}+n q, n \geq 0
$$

Example: $h_{n}=3+5 n$: $3,8,13,18,23,28, \ldots$

Geometric sequence: $h_{0}, q h_{0}, q^{2} h_{0}, \ldots$

$$
h_{n}=q h_{n-1}=q^{n} h_{0}, n \geq 0
$$

Example: $h_{n}=2^{n}: \quad 1,2,4,8,16,32,62,128,256,512, \ldots$
$h_{n}=2^{n}=$ number of combinations of an n-element set.
Partial sums: $s_{n}=\sum_{k=0}^{n} h_{k}$
Partial sums of arithmetic sequence:

$$
s_{n}=\sum_{k=0}^{n} h_{0}+k q=\sum_{k=0}^{n} h_{0}+\sum_{k=0}^{n} k q=(n+1) h_{0}+\frac{q n(n+1)}{2}
$$

Example: If $h_{k}=3+5 k$, then $s_{n}=\sum_{k=0}^{n} h_{k}=(n+1) 3+\frac{5 n(n+1)}{2}$

$$
3,11,24,42,65,93, \ldots
$$

Geometric sequence: $s_{n}=\sum_{k=0}^{n} q^{k} h_{0}= \begin{cases}\frac{q^{n+1}-1}{q-1} h_{0} & q \neq 1 \\ (n+1) h_{0} & q=1\end{cases}$
Example: If $h_{k}=2^{k}$, then $s_{n}=\sum_{k=0}^{n} h_{k}=\frac{2^{n+1}-1}{2-1}$

Fibonacci:

Suppose a pair of rabbits of the opposite sex give birth to a pair of rabbits of opposite sex every month starting with their second month. If we begin with a pair of newly born rabbits, how many rabbits are there after one year.

Let $f_{n}=\#$ of pairs of rabbits at the beginning of month n
$f_{0}=f_{1}=f_{2}=\quad f_{3}=\quad f_{4}=\quad f_{5}=$
Hence $f_{n}=$
Lemma: $s_{n}=\sum_{k=0}^{n} f_{n}=f_{n-2}-1$
Proof by induction on n.
Lemma: f_{n} is even iff $3 \mid n$.
Proof by induction on n.
Note that $f_{0}=0$ is even, $f_{1}=1$ is odd, and $f_{2}=1$ is odd.
Suppose $f_{3 n}$ is even, $f_{3 n+1}$ is odd, and $f_{3 n+2}$ is odd.
Then $f_{3 n+3}=f_{3 n+2}+f_{3 n+1}$. Since odd + odd is even, $f_{3 n+3}$ is even.

Then $f_{3 n+4}=f_{3 n+3}+f_{3 n+2}$. Since even + odd is odd,
$f_{3 n+4}$ is odd.
Then $f_{3 n+5}=f_{3 n+4}+f_{3 n+3}$. Since odd + even is odd,
$f_{3 n+5}$ is odd.

Thm 7.1.2: $f_{n}=\sum_{k=0}^{n-1}\binom{n-1-k}{k}$
Proof: Check if $g(n)=\sum_{k=0}^{n-1}\binom{n-1-k}{k}$
satisfies $g(n)=g(n-1)+g(n-2)$ and $g(1)=1$ and $g(2)=1$

Thm 7.1.1: $f_{n}=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n}$

