Suppose a multiset consisting of integers between 0 and 5 inclusive of size k must contain the following:
even number of 0's: $x^{0}+x^{2}+x^{4}+\ldots=\frac{1}{1-x^{2}}$
odd number of 1's: $x^{1}+x^{3}+x^{5}+\ldots=\frac{x}{1-x^{2}}$
three or four 2's: $x^{3}+x^{4}=x^{3}(1+x)$
the number of 3's is a multiple of five: $x^{0}+x^{5}+x^{10}+\ldots=\frac{1}{1-x^{5}}$ btwn zero to four (inclusive) 4's: $x^{0}+x^{1}+x^{2}++x^{3}+x^{4}=\frac{1-x^{5}}{1-x}$ zero or one 5: $x^{0}+x^{1}=1+x$

$$
\begin{aligned}
g(x)= & \left(x^{0}+x^{2}+x^{4}+\ldots\right)\left(x^{1}+x^{3}+x^{5}+\ldots\right)\left(x^{3}+x^{4}\right) \\
& \left(x^{0}+x^{5}+x^{10}+\ldots\right)\left(x^{0}+x^{1}+x^{2}++x^{3}+x^{4}\right)\left(x^{0}+x\right) \\
= & \left(\frac{1}{1-x^{2}}\right)\left(\frac{x}{1-x^{2}}\right) x^{3}(1+x)\left(\frac{1}{1-x^{5}}\right)\left(\frac{1-x^{5}}{1-x}\right)(1+x) \\
= & \frac{x^{4}}{(1-x)^{3}}=x^{4} \Sigma_{k=0}^{\infty}\binom{3+k-1}{k} x^{k}=\Sigma_{k=0}^{\infty} \frac{(k+2)(k+1)}{2} x^{k+4}
\end{aligned}
$$

Find the number of multisets of size n.

Find the number of multisets of size 100.

Determine the generating function for $h_{n}=$ the number of ways to make n cents using pennies, nickels, dimes, and quarters.

Note $h_{n}=$ the number of nonnegative integral solutions to

$$
e_{1}+5 e_{2}+10 e_{3}+25 e_{4}=n
$$

Let $f_{1}=e_{1}, f_{2}=5 e_{2}, f_{3}=10 e_{3}, f_{4}=25 e_{4}$,
Then $h_{n}=$ the number of nonnegative integral solutions to $f_{1}+f_{2}+f_{3}+f_{4}=n$
where f_{1} is a nonnegative integer
f_{2} is a multiple of 5
f_{3} is a multiple of 10
f_{4} is a multiple of 25
Hence the generating function for h_{n} is

