7.4: linear homogeneous recurrence relation:

Defn: A recurrence relation is linear if

$$
h_{n}=a_{1}(n) h_{n-1}+a_{2}(n) h_{n-2}+\ldots+a_{k}(n) h_{n-k}+b(n)
$$

A recurrence relation has order k if $a_{k} \neq 0$
Ex: Derangement

$$
\begin{gathered}
D_{n}=(n-1) D_{n-1}+(n-1) D_{n-2}, \quad D_{1}=0, \quad D_{2}=1 \\
D_{n}=n D_{n-1}+(-1)^{n}, \quad D_{1}=0
\end{gathered}
$$

Fibonacci: $f_{n}=f_{n-1}+f_{n-2}, \quad f(0)=0, \quad f(1)=1$
Defn: A linear recurrence relation is homogeneous if $b=0$
Defn: A linear recurrence relation has constant coefficients if the a_{i} 's are constant.

Tentative HW 12: Ch 14: 1, 4, 5, 10, 13, 18, 22, 24, 25 and
A.) Suppose the sequences r_{n}, s_{n}, and t_{n} satisfy the homogeneous linear recurrence relation,

$$
h_{n}=a_{1}(n) h_{n-1}+a_{2}(n) h_{n-2}+a_{3}(n) h_{n-3}\left({ }^{* *}\right) .
$$

Show that the sequence, $c_{1} r_{n}+c_{2} s_{n}+c_{3} t_{n}$ also satisfies this homogeneous linear recurrence relation $\left({ }^{* *}\right)$.
B.) Suppose the sequence ψ_{n} satisfies the linear recurrence reln, $h_{n}=$ $a_{1}(n) h_{n-1}+a_{2}(n) h_{n-2}+a_{3}(n) h_{n-3}+b(n)\left(^{*}\right)$. Show that the sequence, $c_{1} r_{n}+c_{2} s_{n}+c_{3} t_{n}+\psi_{n}$ also satisfies this linear recurrence relation.
C.) How many terms of the sequence are needed to find a unique sequence with these terms satisfying $(*)$. What linear system of equations can be used to determine c_{1}, c_{2}, c_{3}.
7.4: linear homogeneous recurrence relation w/constant coefficients:

Ex: Solve the recurrence relation: $h_{n}+h_{n-2}=0, h_{0}=3, h_{1}=5$
Guess q^{n} is a solution.
$q^{n}+q^{n-2}=q^{n-2}\left(q^{2}+1\right)=0 \quad q^{2}+1=0$ implies $q= \pm i$
Thus the general solution is $h_{n}=c_{1} i^{n}+c_{2}(-i)^{n}$
i.e., this function satisfies the recurrence relation.

Now need to find c_{i} 's resulting in initial conditions:
$h_{0}=3: c_{1}+c_{2}=3$ implies $c_{2}=3-c_{1}$
$h_{1}=5: c_{1} i-c_{2} i=5$ implies $-c_{1}+c_{2}=5 i$
$-c_{1}+3-c_{1}=5 i$. Thus $-2 c_{1}+3=5 i$
Hence $c_{1}=\frac{3-5 i}{2}$ and $c_{2}=3-\left(\frac{3-5 i}{2}\right)=\frac{3+5 i}{2}$
$h_{n}=\left(\frac{3-5 i}{2}\right) i^{n}+\left(\frac{3+5 i}{2}\right)(-i)^{n}$ satisfies the recurrence relation and the initial conditions.

$$
\begin{aligned}
& h_{n}=i^{n}\left[\left(\frac{3-5 i}{2}\right)+\left(\frac{3+5 i}{2}\right)(-1)^{n}\right]=i^{n}\left[\left(\frac{3}{2}\right)\left(1+(-1)^{n}\right)+\left(\frac{5 i}{2}\right)\left(-1+(-1)^{n}\right)\right] \\
& h_{2 j}=\left(\frac{3-5 i}{2}\right) i^{2 j}+\left(\frac{3+5 i}{2}\right)(-i)^{2 j}=3(-1)^{j} \\
& h_{2 j+1}=\left(\frac{3-5 i}{2}\right) i^{2 j+1}+\left(\frac{3+5 i}{2}\right)(-i)^{2 j+1}=-5(i)^{2 j+2}=5(-1)^{j}
\end{aligned}
$$

Thus starting with h_{0}, we have the sequence:

$$
3,5,-3,-5,3,5,-3,-5,3,5,-3,-5,3,5, \ldots
$$

Ex: Solve the recurrence relation, $h_{n}-2 h_{n-1}+2 h_{n-3}-h_{n-4}=0$, $h_{0}=3, h_{1}=3, h_{2}=7, h_{3}=15$.

Guess q^{n} is a solution.
$q^{n}-2 q^{n-1}+2 q^{n-3}-q^{n-4}=q^{n-4}\left(q^{4}-2 q^{3}+2 q-1\right)=0$,
$q^{n-4}\left(q^{3}-3 q^{2}+3 q-1\right)(q+1)=q^{n-4}(q-1)^{3}(q+1)=0$
$\mathrm{q}=1,1,1,-1$
Note: 1 is a repeated root
Note $n^{j}(1)^{n}, j=0,1,2$, are solutions to the recurrence relation.
Check: If $h_{n}=(1)^{n}=1: 1-2+2-1=0$.
Check: If $h_{n}=n(1)^{n}=n$:
$n-2(n-1)+2(n-3)-(n-4)=n-2 n+2 n-n+2-6+4=0$
Check: If $h_{n}=n^{2}(1)^{n}=n^{2}$:
$n^{2}-2(n-1)^{2}+2(n-3)^{2}-(n-4)^{2}=$
$n^{2}-2\left(n^{2}-2 n+1\right)+2\left(n^{2}-6 n+9\right)-\left(n^{2}-8 n+16\right)=0$
General solution
$h_{n}=c_{1}(1)^{n}+c_{2} n(1)^{n}+c_{3} n^{2}(1)^{n}+c_{4}(-1)^{n}=c_{1}+c_{2} n+c_{3} n^{2}+c_{4}(-1)^{n}$
Now need to find c_{i} 's resulting in initial conditions:
$h_{0}=3=c_{1}+c_{4}$
$h_{1}=3=c_{1}+c_{2}+c_{3}-c_{4}$
$h_{2}=7=c_{1}+2 c_{2}+4 c_{3}+c_{4}$
$h_{3}=15=c_{1}+3 c_{2}+9 c_{3}-c_{4}$
$h_{0}=3=c_{1}+c_{4}$
$h_{1}=3=c_{1}+c_{2}+c_{3}-c_{4}$
$h_{2}=7=c_{1}+2 c_{2}+4 c_{3}+c_{4}$
$h_{3}=15=c_{1}+3 c_{2}+9 c_{3}-c_{4}$
$\left(\begin{array}{ccccc}1 & 0 & 0 & 1 & 3 \\ 1 & 1 & 1 & -1 & 3 \\ 1 & 2 & 4 & 1 & 7 \\ 1 & 3 & 9 & -1 & 15\end{array}\right) \rightarrow\left(\begin{array}{ccccc}1 & 0 & 0 & 1 & 3 \\ 0 & 1 & 1 & -2 & 0 \\ 0 & 2 & 4 & 0 & 4 \\ 0 & 3 & 9 & -2 & 12\end{array}\right)$
$\left(\begin{array}{ccccc}1 & 0 & 0 & 1 & 3 \\ 0 & 1 & 1 & -2 & 0 \\ 0 & 0 & 2 & 4 & 4 \\ 0 & 0 & 6 & 4 & 12\end{array}\right) \rightarrow\left(\begin{array}{ccccc}1 & 0 & 0 & 1 & 3 \\ 0 & 1 & 1 & -2 & 0 \\ 0 & 0 & 2 & 4 & 4 \\ 0 & 0 & 0 & -8 & 0\end{array}\right)$
$\left(\begin{array}{ccccc}1 & 0 & 0 & 1 & 3 \\ 0 & 1 & 1 & -2 & 0 \\ 0 & 0 & 2 & 4 & 4 \\ 0 & 0 & 0 & -8 & 0\end{array}\right) \rightarrow\left(\begin{array}{ccccc}1 & 0 & 0 & 1 & 3 \\ 0 & 1 & 1 & -2 & 0 \\ 0 & 0 & 1 & 2 & 2 \\ 0 & 0 & 0 & 1 & 0\end{array}\right)$
$\left(\begin{array}{ccccc}1 & 0 & 0 & 0 & 3 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 1 & 0\end{array}\right) \rightarrow\left(\begin{array}{ccccc}1 & 0 & 0 & 0 & 3 \\ 0 & 1 & 0 & 0 & -2 \\ 0 & 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 1 & 0\end{array}\right)$
Thus $c_{1}=3, c_{2}=-2, c_{3}=2, c_{4}=0$.
$h_{n}=c_{1}+c_{2} n+c_{3} n^{2}+c_{4}(-1)^{n}=3-2 n+2 n^{2}$
Hence $h_{n}=3-2 n+2 n^{2}$
Check Initial Conditions: $h_{0}=3, h_{1}=3, h_{2}=7, h_{3}=15$
$h_{0}=3-0+0=3$
$h_{1}=3-2+2=3$,
$h_{2}=3-4+8=7$ $h_{3}=3-6+18=15$.
7.4: linear homogeneous recurrence relation:

$$
h_{n}-a_{1} h_{n-1}-a_{2} h_{n-2}-\ldots-a_{k} h_{n-k}=0
$$

Suppose $\phi(n)$ and $\psi(n)$ are solns to the above recurrence relation, then

Claim 1: $c \phi(n)$ is a solution for any constant c

Claim 2: $\phi(n)+\psi(n)$ is also a solution.

Hence if $\phi_{i}(n)$ are solns, then $\Sigma c_{i} \phi_{i}(n)$ is a soln for any constants c_{i}.

Thm 7.4.1: Suppose a_{i} are constants and $q \neq 0$. Then q^{n} is a solution to

$$
h_{n}-a_{1} h_{n-1}-a_{2} h_{n-2}-\ldots-a_{k} h_{n-k}=0
$$

iff q is a root of the polynomial equation

$$
x^{k}-a_{1} x^{k-1}-a_{2} x^{k-2}-\ldots-a_{k}=0
$$

If this characteristic equation has k distinct roots, $q_{1}, q_{2}, \ldots, q_{k}$, then $h_{n}=c_{1} q_{1}^{n}+c_{2} q_{2}^{n}+\ldots+c_{k} q_{k}^{n}$ is the general solution.
I.e, given any initial values for $h_{0}, h_{1}, \ldots, h_{k-1}$, there exists $c_{1}, c_{2}, \ldots, c_{k}$ such that $h_{n}=c_{1} q_{1}^{n}+c_{2} q_{2}^{n}+\ldots+c_{k} q_{k}^{n}$ satisfies the recurrence relation and the initial conditions.

Thm 7.4.2: Suppose q_{i} is an s_{i}-fold root of the characteristic equation. Then
$H_{i}(n)=c_{1} q_{i}^{n}+c_{2} n q_{i}^{n}+\ldots+c_{s_{i}} n^{s_{i}-1} q_{i}^{n}$
is a solution to the recurrence relation.
If the characteristic equation has t distinct roots q_{1}, \ldots, q_{t} with multiplicity s_{1}, \ldots, s_{t}, respectively, then
$h_{n}=H_{1}(n)+\ldots H_{t}(n)$ is a general solution.
7.5: Non-homogeneous Recurrence Relations.

$$
h_{n}-a_{1} h_{n-1}-a_{2} h_{n-2}-\ldots-a_{k} h_{n-k}=b
$$

Let $k(h)=h_{n}-a_{1} h_{n-1}-a_{2} h_{n-2}-\ldots-a_{k} h_{n-k}$
Suppose ϕ is a solution to the recurrence relation $k(h)=0$ and β is a solution to the recurrence relation $k(h)=b$.

Claim: $\phi+\beta$ is a solution to

To solve a non-homogeneous recurrence relation.
Step 1: Solve homogeneous equation.
Recall if constant coeffficents, guess $h_{n}=q^{n}$ for homogeneous eq'n.
Step 2: Guess a solution to non-homogeneous equation, by guessing a solution β_{n} similar to $b(n)$.

Step 3a: Note general solution is $\sum c_{i} \phi_{i}(n)+\beta(n)$.
Step 3b: Find c_{i} using initial conditions.

Ex: Solve the recurrence relation: $h_{n}+h_{n-2}=14 n, h_{0}=3, h_{1}=5$
Step 1: Guess q^{n} is a solution to homogeneous equation:

$$
h_{n}+h_{n-2}=0 .
$$

$q^{n}+q^{n-2}=q^{n-2}\left(q^{2}+1\right)=0$

$$
q^{2}+1=0 \text { implies } q= \pm i
$$

Thus the general solution to homogeneous equation is

$$
h_{n}=c_{1} i^{n}+c_{2}(-i)^{n}
$$

Step 2: Guess a solution to non-homogeneous equation:

$$
h_{n}+h_{n-2}=14 n
$$

Guess $\beta_{n}=x n+y$.
Plug β_{n} into non-homogeneous equation: $[x n+y]+[x(n-2)+y]=14 n$
Solve for x and $y: 2 x n+2 y-2 x=14 n$ implies $x=7$ and $y=7$.
Thus a solution to non-homogeneous equation is $\beta(n)=7 n+7$.
Step 3a: Note general soln to non-homogeneous equation is

$$
h_{n}=c_{1} i^{n}+c_{2}(-i)^{n}+7 n+7
$$

Step 3b: Find c_{i} using initial conditions.

$$
h_{n}+h_{n-2}=14 n, h_{0}=3, h_{1}=5
$$

$h_{0}=3: c_{1} i^{0}+c_{2}(-i)^{0}+7(0)+7=3 \quad$ implies $\quad c_{1}+c_{2}=-4$
$h_{1}=5: c_{1} i^{1}+c_{2}(-i)^{1}+7(1)+7=5 \quad$ implies $\quad i c_{1}-i c_{2}=-9$
$\begin{aligned} c_{1}+c_{2} & =-4 \\ -c_{1}+c_{2} & =-9 i\end{aligned}$
implies $c_{1}=\frac{-4+9 i}{2}=-2+\frac{9 i}{2}$ and $c_{2}=\frac{-4-9 i}{2}=-2-\frac{9 i}{2}$
$h_{n}=\left(-2+\frac{9 i}{2}\right) i^{n}+\left(-2-\frac{9 i}{2}\right)(-i)^{n}+7 n+7$
$=\left(i^{n}\right)\left[(-2)\left(1+(-1)^{n}\right)+\left(\frac{9 i}{2}\right)\left(1-(-1)^{n}\right)\right]+7 n+7$
$h_{2 j}=(-1)^{j}(-4)+7(2 j)+7=4(-1)^{j+1}+7+14 j$
$h_{2 j+1}=\left(i^{2 j+1}\right) 9 i+7(2 j+1)+7=\left(i^{2 j+2}\right) 9+14 j+14=9(-1)^{j+1}+14 j+14$
Thus the sequence is $3,5,25,37,31,33,53,65,59,61,81,93, \ldots$

