8.2

Given the sequence $h_{0}, h_{1}, h_{2}, \ldots$, define its difference sequence by

$$
\Delta h_{0}, \Delta h_{1}, \Delta h_{2}, \ldots \text { where } \Delta h_{n}=h_{n+1}-h_{n}
$$

and its pth order difference sequence by

$$
\Delta^{p} h_{0}, \Delta^{p} h_{1}, \Delta^{p} h_{2}, \ldots \text { where } \Delta^{p} h_{n}=\Delta\left(\Delta^{p-1} h_{n}\right)
$$

Ex: $h_{n}=n^{2}-n+1$

Thm 8.2.1
Suppose $h_{n}=a_{p} n^{p}+a_{p-1} n^{p-1}+\ldots+a_{1} n+a_{0}$. Then $\Delta^{p+1} h_{n}=0 \forall n$

Proof by induction on p :
$p=0:$

Note that the set of all complex-valued sequences form a vector space and Δ is a linear transformation on this vector space.

Defn: The 0th diagonal of the difference table for h_{n} is $h_{0}=\Delta^{0} h_{0}, \Delta^{1} h_{0}, \Delta^{2} h_{0}, \ldots$

Note the 0th diagonal of the difference table for h_{n} determines h_{n}

Lemma: Suppose the 0th diagonal of the difference table for h_{n} is $0,0, \ldots, 0,1,0,0, \ldots$ where 1 is preceded by exactly p zeros. Then $h_{n}=\binom{n}{p}$

Thm 8.2.2: Suppose 0th diagonal of the difference table for h_{n} is $c_{0}, c_{1}, \ldots, c_{p}, 0,0,0, \ldots$
Then $h_{n}=c_{0}\binom{n}{0}+c_{1}\binom{n}{1}+\ldots+c_{p}\binom{n}{p}$.

Thm 8.2.3: Suppose 0th diagonal of the difference table for h_{n} is $c_{0}, c_{1}, \ldots, c_{p}, 0,0,0, \ldots$
Then $\Sigma_{k=0}^{n} h_{k}=c_{0}\binom{n+1}{1}+c_{1}\binom{n+1}{2}+\ldots+c_{p}\binom{n+1}{p+1}$.

Ex: Find $\Sigma_{k=0}^{n} k^{3}=$

