www.geometrygames.org/TorusGames
Equivalence class $[a]=\{x \mid x \sim a\}$
$\mathcal{P}=\left\{P_{\alpha} \mid \alpha \in A\right\}$ is a partition of X iff
$X=\cup_{P_{\alpha} \in \mathcal{P}} P_{\alpha}, \quad P_{\alpha} \neq \emptyset \forall \alpha$, and $P_{\alpha} \cap P_{\beta}=\emptyset$
Suppose $X=\cup_{\alpha \in B} R_{\alpha}$ and $R_{\alpha} \neq \emptyset \forall \alpha$, and $R_{\alpha} \cap R_{\beta} \neq \emptyset$ implies $R_{\alpha}=R_{\beta}$. Then $\mathcal{R}=\left\{R_{\alpha} \mid \alpha \in B\right\}$ is a partition of X

Suppose $a, b \in \mathcal{Z}-\{0\} . \quad a \sim b$ if $a b>0$
$[4]=$
$[-2]=$
Ex: $\mathcal{Z}-\{0\}=\cup_{n \in 2 \mathcal{Z}-\{0\}}[n]$

$$
=\cup_{n \in \mathcal{Z}-\{0\}}[2 n]=\left(\cup_{n=-1}^{-\infty}[2 n]\right) \cup\left(\cup_{n=1}^{\infty}[2 n]\right)
$$

Thm 4.5.3: If \sim is an equivalence relation on X, then $\left\{\left[x_{\alpha}\right] \mid x_{\alpha} \in X\right\}$ is a partition of X.

If $\mathcal{P}=\left\{P_{\alpha} \mid \alpha \in A\right\}$ is a partition of X, then $x \sim y$ iff $\exists P_{\alpha}$ such that $x, y \in P_{\alpha}$ is an equivalence relation.

