Thm 2.1.1. Pigeonhole Principle (weak form): If you have n+1 pigeons in n pigeonholes, then at least one pigeonhole with be occupied by 2 or more pigeons.

If $f : A \to B$ is a function and |A| = n + 1, and |B| = n, then f is not 1:1.

If $f : A \to B$ is a function and A is finite and |A| > |B|, then f is not 1:1.

 $id: \{1, ..., n\} \to \{1, ..., n\}, \, id(k) = k \text{ is } 1:1.$

 $c: \{1, ..., n\} \to \{1, ..., n\}, id(k) = 1$ is not 1:1.

Thm 2.2.1 Pigeonhole Principle (strong form): Let $q_1, q_2, ..., q_n$ be positive integers. If $q_1 + q_2 + ... + q_n - n + 1$ objects are put into n boxes, then for some i the ith box contains at least q_i objects

Cor: $q_i = 1$ for all *i* implies Thm 2.1.1.

Cor: If $q_i = r$ for all *i*, then if n(r-1) + 1 objects are put into *n* boxes, then there exists a box containing at least *r* objects.

Cor: If $\frac{m_1 + \dots, m_n}{n} > r - 1$, then there exists an *i* such that $m_i \ge r$.

Cor: If $\frac{m_1 + \dots, m_n}{n} < r$, then there exists an *i* s. t. $m_i < r$.

Appl 7: If you have an arbitrary number of apples, bananas and oranges, what is the smallest number of these fruits that one needs to put in a basket in order to guarantee there are at least 8 apples or at least 6 bananas or at least 9 oranges in the basket.

Appl 9: Show that every sequence $a_1, a_2, ..., a_{n^2+1}$ contains either an increasing or decreasing subsequence of length n + 1.

Example (n = 2): $a_1 = , a_2 = , a_3 = , a_4 = , a_5 =$ $m_1 =$ $m_2 =$ $m_3 =$ $m_4 =$ $m_5 =$ Proof:

Let $m_k = \text{length of largest increasing subsequence beginning}$ with a_k . Example of a Ramsey theorem: In a group of 6 people, there are either 3 who know each other or 3 who are strangers to each other.

Ramsey number $= r(s,t) = min\{n \mid \text{ if the edges of } K_n \text{ are colored red and blue, then there exists either a red } K_s \text{ or a blue } K_t\}$

$$r(3,3) = 6$$
 $r(s,t) = r(t,s)$ $r(s,2) = r(2,s) = s$

Thm (Erdos and Szekeres): r(s,t) is finite for all $s, t \ge 2$. If s > 2, t > 2, then

$$r(s,t) \le r(s-1,t) + r(s,t-1)$$
$$r(s,t) \le \binom{s+t-2}{s-1}$$

 $r = r(s_1, ..., s_k)$: using k colors, there exist an i such that K_r contains an i colored K_{s_i}

Hypergraph: $(V, E), E \subset \mathcal{P}(V)$ $X^{(t)} = \text{set of all t-tuples of } X.$ A coloring of edges: $c : X^{(t)} \to \{red, blue\}$ $Y \subset X$ is a red n set if |Y| = n and $c(Y^{(t)}) = \text{red.}$ $R_t(n_1, n_2) = min\{m \mid |X| = m \text{ implies } X^{(t)} \text{ has a red } n_1$ set or a blue n_2 set $\}$ Ex: If $X = \{a, b, c, d\}$ then $X^{(2)} = \{\{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}\} = K_4$ $R_2(s, t) = R(s, t)$ $X^{(3)} = \{\{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}\}$ $X^{(4)} = \{\{a, b, c, d\}\}$ Have you had 22M50 (the pre-req for this course)?How comfortable are you with writing proofs?How comfortable are you with permutations/combinations?Is the pace of the class too slow, about right, or too fast?Do you have any special interests in Discrete Mathematics?Any other comments?