Thm 2.1.1. Pigeonhole Principle (weak form): If you have $n+1$ pigeons in n pigeonholes, then at least one pigeonhole with be occupied by 2 or more pigeons.

If $f: A \rightarrow B$ is a function and $|A|=n+1$, and $|B|=n$, then f is not 1:1.

If $f: A \rightarrow B$ is a function and A is finite and $|A|>|B|$, then f is not 1:1.
$i d:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}, i d(k)=k$ is 1:1.
$c:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}, i d(k)=1$ is not 1:1.
Thm 2.2.1 Pigeonhole Principle (strong form): Let $q_{1}, q_{2}, \ldots, q_{n} \rrbracket$ be positive integers. If $q_{1}+q_{2}+\ldots+q_{n}-n+1$ objects are put into n boxes, then for some i the i th box contains at least q_{i} objects

Cor: $q_{i}=1$ for all i implies Thm 2.1.1.
Cor: If $q_{i}=r$ for all i, then if $n(r-1)+1$ objects are put into n boxes, then there exists a box containing at least r objects.

Cor: If $\frac{m_{1}+\ldots, m_{n}}{n}>r-1$, then there exists an i such that $m_{i} \geq r$.

Cor: If $\frac{m_{1}+\ldots, m_{n}}{n}<r$, then there exists an i s. t. $m_{i}<r$.

Appl 7: If you have an arbitrary number of apples, bananas and oranges, what is the smallest number of these fruits that one needs to put in a basket in order to guarantee there are at least 8 apples or at least 6 bananas or at least 9 oranges in the basket.

Appl 9: Show that every sequence $a_{1}, a_{2}, \ldots, a_{n^{2}+1}$ contains either an increasing or decreasing subsequence of length $n+$ 1.

Example ($n=2$):
$a_{1}=\quad, a_{2}=\quad, a_{3}=\quad, a_{4}=\quad, a_{5}=$
$m_{1}=$
$m_{2}=$
$m_{3}=$
$m_{4}=$
$m_{5}=$
Proof:

Let $m_{k}=$ length of largest increasing subsequence beginning with a_{k}.

Example of a Ramsey theorem: In a group of 6 people, there are either 3 who know each other or 3 who are strangers to each other.

Ramsey number $=r(s, t)=\min \left\{n \mid\right.$ if the edges of K_{n} are colored red and blue, then there exists either a red K_{s} or a blue K_{t} \}
$r(3,3)=6 \quad r(s, t)=r(t, s) \quad r(s, 2)=r(2, s)=s$
Thm (Erdos and Szekeres): $r(s, t)$ is finite for all $s, t \geq 2$. If $s>2, t>2$, then

$$
\begin{gathered}
r(s, t) \leq r(s-1, t)+r(s, t-1) \\
r(s, t) \leq\binom{ s+t-2}{s-1}
\end{gathered}
$$

$r=r\left(s_{1}, \ldots, s_{k}\right)$: using k colors, there exist an i such that K_{r} contains an i colored $K_{s_{i}}$

Hypergraph: $(V, E), E \subset \mathcal{P}(V)$
$X^{(t)}=$ set of all t-tuples of X.
A coloring of edges: $c: X^{(t)} \rightarrow\{$ red, blue $\}$
$Y \subset X$ is a red n set if $|Y|=n$ and $c\left(Y^{(t)}\right)=$ red.
$R_{t}\left(n_{1}, n_{2}\right)=\min \left\{m| | X \mid=m\right.$ implies $X^{(t)}$ has a red n_{1} set or a blue n_{2} set $\}$

Ex: If $X=\{a, b, c, d\}$ then
$X^{(2)}=\{\{a, b\},\{a, c\},\{a, d\},\{b, c\},\{b, d\},\{c, d\}\}=K_{4}$
$R_{2}(s, t)=R(s, t)$
$X^{(3)}=\{\{a, b, c\},\{a, b, d\},\{a, c, d\},\{b, c, d\}\}$
$X^{(4)}=\{\{a, b, c, d\}\}$

Have you had 22M50 (the pre-req for this course)?
How comfortable are you with writing proofs?
How comfortable are you with permutations/combinations?
Is the pace of the class too slow, about right, or too fast?
Do you have any special interests in Discrete Mathematics?
Any other comments?

