Thm 2.2.1 Pigeonhole Principle (strong form): Let $q_{1}, q_{2}, \ldots, q_{n}$ be positive integers. If $q_{1}+q_{2}+\ldots+q_{n}-n+1$ objects are put into n boxes, then for some i the i th box contains at least q_{i} objects

Cor: If $q_{i}=r$ for all i, then if $n(r-1)+1$ objects are put into n boxes, then there exists a box containing at least r objects.

Cor: If $\frac{m_{1}+\ldots, m_{n}}{n}>r-1$, then there exists an i such that $m_{i} \geq r$.

Appl 9: Show that every sequence $a_{1}, a_{2}, \ldots, a_{n^{2}+1}$ contains either an increasing or decreasing subsequence of length $n+1$.

Example $(n=2)$:
$a_{1}=8, a_{2}=4, a_{3}=10, a_{4}=6, a_{5}=4$
Need $n+1$ objects in our subsequence. Suppose $r=n+1$.
Hence might need $n(r-1)+1=n(n+1-1)+1=n^{2}+1$ objects in n boxes in order to obtain at least $r=n+1$ objects in one of the boxes.

Let $m_{k}=$ length of largest increasing subsequence beginning with a_{k}.

$$
8,10 \quad m_{1}=2
$$

4
4, 10
4, 6
$4,4 \quad m_{2}=2$
$10 \quad m_{3}=1$
$6 m_{4}=1$
$4 \quad m_{5}=1$

Proof: Let $m_{k}=$ length of largest increasing subsequence beginning with $a_{k}, k=1, \ldots, n^{2}+1$.

Suppose there exists an $m_{k} \geq n+1$. Then there exists an increasing subsequence of length $m_{k} \geq n+1$. Hence there exists an increasing subsequence of length $n+1$.

Suppose $m_{k}<n+1$. Then $m_{k}=1,2, \ldots$, or n.
Hence there exists an i such that $m_{k}=i$ for $n+1 a_{k}$'s.
There exists $a_{k_{1}}, a_{k_{2}}, \ldots, a_{k_{n+1}}$ such that

$$
m_{k_{1}}=m_{k_{2}}=\ldots=m_{k_{n+1}}=i
$$

Show $a_{k_{1}}, a_{k_{2}}, \ldots, a_{k_{n+1}}$ is a decreasing sequence.
Suppose not. Then there exists a j such that $a_{k_{j}}>a_{k_{j+1}}$.
\exists an increasing subsequence of length i starting at $a_{k_{j}}$
There does not exist an increasing subsequence of length $i+1$ starting at $a_{k_{j}}$
\exists an increasing subsequence of length i starting at $a_{k_{j+1}}$
There does not exist an increasing subsequence of length $i+1$ starting at $a_{k_{j+1}}$

Suppose $a_{k_{j+1}}, a_{h_{2}}, a_{h_{3}}, \ldots, a_{h_{i}}$ is an increasing subsequence of length i.

Then $a_{k_{j}}, a_{k_{j+1}}, a_{h_{2}}, a_{h_{3}}, \ldots, a_{h_{i}}$ is an increasing subsequence of length $i+1$, a contradiction.

