Thm 2.2.1 Pigeonhole Principle (strong form): Let $q_1, q_2, ..., q_n$ be positive integers. If $q_1 + q_2 + ... + q_n - n + 1$ objects are put into n boxes, then for some i the ith box contains at least q_i objects

Cor: If $q_i = r$ for all i, then if n(r-1)+1 objects are put into n boxes, then there exists a box containing at least r objects.

Cor: If $\frac{m_1 + \dots + m_n}{n} > r - 1$, then there exists an *i* such that $m_i \ge r$.

Appl 9: Show that every sequence $a_1, a_2, ..., a_{n^2+1}$ contains either an increasing or decreasing subsequence of length n+1.

Example (n = 2):

$$a_1 = 8, a_2 = 4, a_3 = 10, a_4 = 6, a_5 = 4$$

Need n + 1 objects in our subsequence. Suppose r = n + 1.

Hence might need $n(r-1) + 1 = n(n+1-1) + 1 = n^2 + 1$ objects in *n* boxes in order to obtain at least r = n+1 objects in one of the boxes.

Let $m_k = \text{length of largest increasing subsequence beginning with } a_k$.

8	8,10	$m_1 = 2$		
4	4,10	4, 6	4, 4	$m_2 = 2$
10	$m_3 = 1$	$6 m_4 = 1$	4	$m_5 = 1$

Proof: Let $m_k = \text{length of largest increasing subsequence}$ beginning with $a_k, k = 1, ..., n^2 + 1$.

Suppose there exists an $m_k \ge n+1$. Then there exists an increasing subsequence of length $m_k \ge n+1$. Hence there exists an increasing subsequence of length n+1.

Suppose $m_k < n + 1$. Then $m_k = 1, 2, ...,$ or n.

Hence there exists an *i* such that $m_k = i$ for n + 1 a_k 's.

There exists
$$a_{k_1}, a_{k_2}, ..., a_{k_{n+1}}$$
 such that
 $m_{k_1} = m_{k_2} = ... = m_{k_{n+1}} = i$

Show $a_{k_1}, a_{k_2}, ..., a_{k_{n+1}}$ is a decreasing sequence.

Suppose not. Then there exists a j such that $a_{k_j} > a_{k_{j+1}}$.

 \exists an increasing subsequence of length *i* starting at a_{k_i}

There does not exist an increasing subsequence of length i+1starting at a_{k_j}

 \exists an increasing subsequence of length *i* starting at $a_{k_{i+1}}$

There does not exist an increasing subsequence of length i+1 starting at $a_{k_{j+1}}$

Suppose $a_{k_{j+1}}, a_{h_2}, a_{h_3}, ..., a_{h_i}$ is an increasing subsequence of length *i*.

Then $a_{k_j}, a_{k_{j+1}}, a_{h_2}, a_{h_3}, ..., a_{h_i}$ is an increasing subsequence of length i + 1, a contradiction.