Let $N(d_1, ..., d_n)$ = the number of labeled trees with n vertices $\{v_1, ..., v_n\}$ such that $deg(v_i) = d_i + 1$.

Let
$$C(n-2, d_1, ..., d_n) = \frac{(n-2)!}{d_1! d_2! \cdots d_n!}$$
.

section 3.5 **34e.)** Claim:
$$N(d_1, ..., d_n) = \begin{cases} C(n-2; d_1, ..., d_n) & \text{if } \Sigma d_i = n-2 \\ 0 & \text{otherwise} \end{cases}$$

Claim
$$N(d_1,...,d_n)=0$$
 if $\Sigma d_i\neq n-2$

Proof:

$$\Sigma d_i = \Sigma_{i=1}^n (deg(v_i) - 1) = [\Sigma_{i=1}^n (deg(v_i))] - n = [2(n-1)] - n = 2n - 2 - n = n - 2$$

Thus $\Sigma d_i = n-2$. Hence $N(d_1,...,d_n) = 0$ if $\Sigma d_i \neq n-2$.

Claim
$$N(d_1, ..., d_n) = C(n-2; d_1, ..., d_n)$$
 if $\Sigma d_i = n-2$ (*)

Proof by induction on k = number of vertices.

By part a, the equality holds for n=2.

Induction hypothesis: Suppose (*) is true when k = n - 1.

By part b, $d_j = 0$ for some j. WLOG assume j = n. Thus by part c,

$$N(d_1,...,d_n) = N(d_1,...,d_{n-1},0) = N(d_1-1,d_2,...,d_{n-1}) + N(d_1,d_2-1,d_3...,d_{n-1}) + \dots + N(d_1,...,d_{n-2},d_{n-1}-1).$$

By part d,

$$C(n-2; d_1, ..., d_n) = C(n-2; d_1, ..., d_{n-1}, 0) = C(n-3; d_1-1, d_2, ..., d_{n-1}) + C(n-3; d_1, d_2-1, d_3, ..., d_{n-1}) + ... + C(n-3; d_1, ..., d_{n-2}, d_{n-1}-1).$$

By the induction hypothesis, $N(d_1, ..., d_n) = N(d_1, ..., d_{n-1}, 0) = N(d_1-1, d_2, ..., d_{n-1}) + N(d_1, d_2-1, d_3..., d_{n-1}) + ... + N(d_1, ..., d_{n-2}, d_{n-1}-1) = C(n-3; d_1-1, d_2, ..., d_{n-1}) + C(n-3; d_1, d_2-1, d_3..., d_{n-1}) + ... + C(n-3; d_1, ..., d_{n-2}, d_{n-1}-1) = C(n-2; d_1, ..., d_{n-1}, 0) = C(n-2; d_1, ..., d_n).$

34a). Suppose n=2. A tree with 2 vertices has 1 edge. Thus $deg(v_i)=1$ for i=1,2. Thus $d_i=0$ for i=1,2. There is exactly one labeled tree with 2 vertices, $T=(\{v_1,v_2\},\{\{v_1,v_2\}\})$.

Thus N(0,0) = 1. $C(0;0,0) = \frac{0!}{0!0!} = 1$. Thus (*) holds for n = 2.

34b.) Claim $d_i = 0$ for some i.

Suppose $d_i > 0$ for all i. Then $deg(v_i) = d_i + 1 > 1$ for all i. That is, $deg(v_i) \ge 2$ for all i.

The number of edges in a graph = $\frac{1}{2}\Sigma deg(v_i)$.

The number of edges in a tree with n vertices is n-1.

Thus $n-1=\frac{1}{2}\sum_{i=1}^n deg(v_i) \geq \frac{1}{2}\sum_{i=1}^n 2=\frac{1}{2}(2n)=n$, a contradiction. Thus $d_i=0$ for some i.

34c). Let $A = \text{set of all labeled trees with } n \text{ vertices } \{v_1, ..., v_n\} \text{ such that } deg(v_i) = d_i + 1.$

Then $|A| = N(d_1, ..., d_n)$.

For j=1,...,n-1, let $B_j=$ set of all labeled trees with n-1 vertices $\{v_1,...,v_{n-1}\}$ such that $deg(v_i)=d_i+1, i\neq j$ and $deg(v_j)=(d_j-1)+1$.

Then $|B_j| = N(d_1, ..., d_{j-1}, d_j - 1, d_{j+1}, ..., d_{n-1})$ for j = 1, ..., n-1.

Note if $T_i \in B_i$, then $deg(v_i) = d_i$.

Suppose $k \neq j$. If $T_k \in B_k$, then $deg(v_j) = d_j + 1$. Thus T_j is not isomorphic to T_j .

Thus $B_i \cap B_k = \emptyset$ for $k \neq j$.

Claim: There exists a bijection $f: A \to \bigcup_{i=1}^{n-1} B_i$.

Note if the claim is true, then $|A| = |\bigcup_{i=1}^{n-1} B_i| = \sum_{i=1}^{n-1} |B_i|$, since the B_i are pairwise disjoint.

Define $g: \bigcup_{i=1}^{n-1} B_i \to A$. Let $T = (V, E) \in B_j$. Let $g(T) = (V \cup \{v_n\}, E \cup \{\{v_j, v_n\}\})$. Note g(T) has n vertices and $deg(v_i) = d_i + 1$ for i = 1, ..., n. Thus $g: \bigcup_{i=1}^{n-1} B_i \to A$ is well-defined.

Claim g^{-1} exists.

WLOG assume $d_n = 0$ (relabel the vertices if needed). $d_n = 0$ implies $deg(v_n) = 1$. Suppose the vertex adjacent to v_n is labeled v_j . Let $T'(V', E') \in A$. Define $f: A \to \bigcup_{i=1}^{n-1} B_i$ by $f(T') = (V' - \{v_n\}, E' - \{\{v_j, v_n\}\})$. Note that f(T') has n-1 vertices, $\{v_1, ..., v_{n-1}\}$ and $deg(v_j) = d_j$, $deg(v_i) = d_i + 1$ for $i \neq j$. Thus f(T') is in B_j , and hence f is well-defined.

$$f(g((V,E))) = f((V \cup \{v_n\}, E \cup \{\{v_j, v_n\}\})) = (V, E).$$

$$g(f((V,E))) = g((V - \{v_n\}, E - \{\{v_j, v_n\}\})) = (V, E).$$

Thus g is invertible. Thus g is a bijection. Thus $|A| = |\bigcup_{i=1}^{n-1} B_i| = \sum_{i=1}^{n-1} |B_i|$.

Alternate proof that g is a bijection:

Claim:
$$g$$
 is onto. Let $T' = (V', E') \in A$. Let $T = (V' - \{v_n\}, E' - \{\{v_j, v_n\}\})$. Then $g(T) = g((V' - \{v_n\}, E' - \{\{v_j, v_n\}\})) = (V', E') = T'$.

Claim g is 1-1:

Suppose g(T) = g(S). Claim T and S are isomorphic ...

34d). Note that by the right-hand side of the equation, we are given that

$$\sum_{i=1}^{n-1} d_i = \left[\sum_{i=1}^n d_i\right] - d_n = n - 2 - 0 = n - 2$$

$$\Sigma_{i=1}^{n-1}C(n-3;d_1,...,d_{i-1},d_i-1,d_{i+1},...,d_{n-1}) = \Sigma_{i=1}^{n-1} \frac{(n-3)!}{d_1! \cdots d_{i-1}!,(d_i-1)!,d_{i+1}! \cdots d_{n-1}!}$$

$$= \sum_{i=1}^{n-1} \frac{(n-3)!d_i}{d_1! \cdots d_{i-1}! \cdot d_i! \cdot d_{i+1}! \cdots d_{n-1}!}$$

$$= \frac{(n-3)!}{d_1! \cdots d_{i-1}! d_i! d_{i+1}! \cdots d_{n-1}!} \sum_{i=1}^{n-1} d_i$$

$$= \frac{(n-3)!}{d_1! \cdots d_{n-1}!} (n-2)$$

$$= \frac{(n-2)!}{d_1! \cdots d_{n-1}! 0!} = \frac{(n-2)!}{d_1! \cdots d_{n-1}! d_n!} = C(n-2, d_1, ..., d_n)$$