HW p. 111: $1-4,7,16,17,18 ;$ p. 40: 19; and
Chapter 2 Basic Counting
2.1 Product Rule: If $S=S_{1} \times S_{2}$, then $|S|=\left|S_{1}\right|\left|S_{2}\right|$.
$x=(a, b) \in S$ implies $a \in S_{1}$ AND $b \in S_{2}$, then $|S|=\left|S_{1}\right|\left|S_{2}\right|$.
How many sequences consisting of one letter followed by one single digit number $(0-9)$ are possible?

How many different license plates are possible if 3 letters followed by 3 numbers are used?

How many different DNA sequences of length 2?

How many different DNA sequences of length 3?

2.6 Subsets

Suppose a set A has four elements (i.e., the cardinality of $A=$ $|A|=4$)

The number of subsets of A is

The number of nonempty subsets of A is

Suppose we know proteins A, B, C, D affect a particular biological reaction. How many different experiments can be performed in order to analyze the effects of these proteins on the biological reaction?

A pizza parlor offers 4 different toppings (sausage, onions, chicken, walnuts). How many different types of pizzas can one order?

Suppose a set B has n elements (i.e., $|B|=n$). The number of subsets of B is
2.2 Sum Rule: If $S=S_{1} \cup S_{2}$ and $S_{1} \cap S_{2}=\emptyset$, then $|S|=$ $\left|S_{1}\right|+\left|S_{2}\right|$.

If $S_{1} \cap S_{2}=\emptyset$ and if $x \in S$ implies $x \in S_{1}$ OR $x \in S_{2}$, then $|S|=\left|S_{1}\right|+\left|S_{2}\right|$.

Suppose a symbol can be either a number between 0 and 9 or a letter. How many are symbols there?

How many even numbers between 100 and 1000 have distinct digits.

2.3, 2.5 Permutations and r-permutations:

Suppose $|S|=n$.

An r-permutation of S is an ordered arrangement of r of the n elements of S.

If $r=n$, then an r-permutation of S is a permutation of S.
$P(n, r)=$ number of r-permutations of S where $|S|=n$.
4 TA's need to be assigned to 4 different classes. How many different possible assignments are there?

4 classes need to be assigned a TA. There are 10 TAs. How many different possible assignments are there?

Defn: $n!=n(n-1)(n-2) \ldots(2)(1), 0!=1$
Thm 3.2.1: If $r>n$, then $P(n, r)=0$.
If $r \leq n$, then $P(n, r)=\frac{n!}{(n-r)!}$
$P(0,0)=\quad P(n, 0)=\quad P(n, 1)=\quad P(n, n)=$
$2.7 r$-Combinations
An r-combination of S is an r-element subset of S (ORDER DOES NOT MATTER).
$C(n, r)=$ number of r-combinations of S where $|S|=n$.
How many different math teams consisting of 4 people can be formed if there are 10 students from which to choose?

Thm: $C(n, r)=\binom{n}{r}=\frac{n!}{r!(n-r)!}=\frac{P(n, r)}{r!}$
Cor: $C(n, r)=C(n, n-r)$
Cor: $C(n, r)=C(n-1, r-1)+C(n-1, r)$
Cor: Pascal's Triangle.
Cor: $\sum_{i=0}^{n}\binom{n}{i}=2^{n}$
How many different proteins containing 10 amino acids can be formed if the protein contains 5 alanines(A), 3 leucines (L), and 2 serines (S)?

