Suppose $d(t)=40 t$ represents miles traveled after t hours.

Average velocity is \qquad
Instantaneous velocity at $t=t_{0}$ is \qquad

Suppose $d(t)=t^{2}$ represents miles traveled after t hours.
t change in time change in distance average velocity btwn $t_{0}=0$ and t btwn $t_{0}=0$ and t btwn $t_{0}=0$ and t

2	$2-0$	$2^{2}-0^{2}$	$\frac{2^{2}-0^{2}}{2-0}=2$
1	$1-0$	$1^{2}-0^{2}$	$\frac{1^{2}-0^{2}}{1-0}=1$
.5	$.5-0$	$(.5)^{2}-0^{2}$	$\frac{(.5)^{2}-0^{2}}{5-0}=.5$
.1	$.1-0$	$(.1)^{2}-0^{2}$	$\frac{(.1)^{2}-0^{2}}{1-0}=.1$
.01	$.01-0$	$(.01)^{2}-0^{2}$	$\frac{(.01)^{2}-0^{2}}{.01-0}=.01$

Instantaneous velocity at $t_{0}=0$ is \qquad

Suppose $d(t)=t^{2}$ represents miles traveled after t hours.
t change in time change in distance average velocity btwn $t_{0}=2$ and t btwn $t_{0}=2$ and t btwn $t_{0}=2$ and t

4	$4-2$	$4^{2}-2^{2}$	$\frac{4^{2}-2^{2}}{4-2}=6$
3	$3-2$	$3^{2}-2^{2}$	$\frac{3^{2}-2^{2}}{3-2}=5$
2.5	$2.5-2$	$(2.5)^{2}-2^{2}$	$\frac{(2.5)^{2}-2^{2}}{2.5-2}=4.5$
2.1	$2.1-2$	$(2.1)^{2}-2^{2}$	$\frac{(2.1)^{2}-2^{2}}{2.1-2}=4.1$
1.9	$1.9-2$	$(1.9)^{2}-2^{2}$	$\frac{(1.9)^{2}-2^{2}}{1.9-2}=3.9$
1.5	$1.5-2$	$(1.5)^{2}-2^{2}$	$\frac{(1.5)^{2}-2^{2}}{1.5-2}=3.5$
1	$1-2$	$1^{2}-2^{2}$	$\frac{1^{2}-2^{2}}{1-2}=3$

Instantaneous velocity at $t_{0}=2$ is \qquad

SLOPE OF SECANT LINE = AVERAGE VELOCITY
SLOPE OF TANGENT LINE $=$ INSTANTANEOUS VELOCITY in general, SLOPE $=$ RATE OF CHANGE

SLOPE OF SECANT LINE $=$ AVERAGE RATE OF CHANGE

