Find the following for $f(x)=$ \qquad (if they exist; if they don't exist, state so). Use this information to graph f.

Optional: Is f even, odd, periodic? What is the domain and range of f ? [2.5] 1a.) critical numbers: \qquad
[2.5] 1b.) relative maximum(s) occur at $x=$ \qquad
[2.5] 1c.) relative minimum(s) occur at $x=$ \qquad
[2.5] 1d.) The absolute maximum of f on the interval $[0,5]$ is \qquad and occurs at $x=$ \qquad
[2.5] 1e.) The absolute minimum of f on the interval $[0,5]$ is \qquad and occurs at $x=$ \qquad
[2.5] 1f.) Inflection point(s) occur at $x=$ \qquad
[2.5] 1g.) f increasing on the intervals \qquad
[2.5] 1h.) f decreasing on the intervals \qquad
[2.5] 1i.) f is concave up on the intervals \qquad
[2.5] 1 j.$) f$ is concave down on the intervals \qquad
[2.5] 1k.) Equation(s) of vertical asymptote(s) \qquad
[5] 11.) Equation(s) of horizontal and/or slant asymptote(s) \qquad [7.5] 1m.) Graph f

