By the chain rule $\left[\left(x^{2}+1\right)^{9}\right]^{\prime}=9\left(x^{2}+1\right)^{8}(2 x)$
Or in other words, $\frac{d\left[\left(x^{2}+1\right)^{9}\right]}{d x}=9\left(x^{2}+1\right)^{8}(2 x)$
Or in other words, if we let $u=x^{2}+1$, then

$$
\begin{gathered}
\frac{d u}{d x}=u^{\prime}=2 x \text { and } \\
{\left[\left(x^{2}+1\right)^{9}\right]^{\prime}=\left[u^{9}\right]^{\prime}=9 u^{8} u^{\prime}=9\left(x^{2}+1\right)^{8}(2 x)}
\end{gathered}
$$

Or in other notation,

$$
\frac{d\left[\left(x^{2}+1\right)^{9}\right]}{d x}=\frac{d\left[u^{9}\right]}{d x}=9 u^{8} \frac{d u}{d x}=9\left(x^{2}+1\right)^{8}(2 x)
$$

We can use the chain rule to calculate a derivative using implicit differentiation.

Ex: Find the slope of the tangent line to $x^{2}+y^{2}=1$ at the point $(x, y)=\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)$.

Long method (without using implicit differentiation):
Solve for y :
$x^{2}+y^{2}=1$ implies $y^{2}=1-x^{2}$ implies $y= \pm \sqrt{1-x^{2}}$
Since the y-value of the point $(x, y)=\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)$ is negative, we are interested in the bottom half of the circle:

$$
y=-\sqrt{1-x^{2}}=-\left(1-x^{2}\right)^{\frac{1}{2}}
$$

To find slope of the tangent line, take derivative:

$$
\frac{d y}{d x}=-\frac{1}{2}\left(1-x^{2}\right)^{\frac{-1}{2}}(-2 x)=\frac{x}{\sqrt{1-x^{2}}}
$$

Hence when $x=\frac{1}{\sqrt{2}}$, then the slope of the tangent line is

$$
\frac{\frac{1}{\sqrt{2}}}{\sqrt{1-\left(\frac{1}{\sqrt{2}}\right)^{2}}}=\frac{\frac{1}{\sqrt{2}}}{\sqrt{1-\left(\frac{1}{2}\right)}}=\frac{\frac{1}{\sqrt{2}}}{\sqrt{\frac{1}{2}}}=\frac{\sqrt{\frac{1}{2}}}{\sqrt{\frac{1}{2}}}=1
$$

We can instead use implicit differentiation:
Note that y is a function of x for the bottom half of the circle: $y=f(x)=-\left(1-x^{2}\right)^{\frac{1}{2}}$

Thus to find the derivative of y^{2}, we can use the chain rule:

$$
\frac{d\left(y^{2}\right)}{d x}=2 y \cdot \frac{d y}{d x}=2\left(-\left(1-x^{2}\right)^{\frac{1}{2}}\right) \cdot \frac{x}{\sqrt{1-x^{2}}}=-2 x
$$

Note $y^{2}=\left[-\left(1-x^{2}\right)^{\frac{1}{2}}\right]^{2}=1-x^{2}$
However, we don't need the above to find the slope of the tangent line to the unit circle at the point $(x, y)=$ $\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)$. Instead:

Shorter method for finding this slope of the tangent line to $x^{2}+y^{2}=1$ at the point $(x, y)=\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)$.

We have $x^{2}+y^{2}=1$, and we want to find slope $=\frac{d y}{d x}$
Take the derivative with respect to x of both sides:

$$
\begin{aligned}
& \frac{d\left(x^{2}+y^{2}\right)}{d x}=\frac{d(1)}{x} \\
& 2 x+2 y \cdot \frac{d y}{d x}=0
\end{aligned}
$$

Solve for $\frac{d y}{d x}: \quad 2 y \cdot \frac{d y}{d x}=-2 x$

$$
\frac{d y}{d x}=\frac{-x}{y}
$$

Hence the slope of the tangent line to the unit circle at the point $(x, y)=\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)$.

$$
\frac{d y}{d x}=\frac{-x}{y}=\frac{-\frac{1}{\sqrt{2}}}{-\frac{1}{\sqrt{2}}}=1
$$

Suppose $2 x^{2} y-3 y^{2}=4$. First find y^{\prime} :
Easiest method is to use implicit differentiation. Take derivative (with respect to x) of both sides.

$$
\begin{aligned}
& \frac{d}{d x}\left(2 x^{2} y-3 y^{2}\right)=\frac{d}{d x}(4) \\
& 4 x y+2 x^{2} y^{\prime}-6 y y^{\prime}=0
\end{aligned}
$$

Solve for y^{\prime} (note this step is easy as one can factor y^{\prime} from some terms. Observe that this will always be the case):

$$
\begin{gathered}
y^{\prime}\left(2 x^{2}-6 y\right)=-4 x y \\
y^{\prime}=\frac{-4 x y}{2 x^{2}-6 y}=\frac{-2(2 x y)}{-2\left(3 y-x^{2}\right)}=\frac{2 x y}{3 y-x^{2}}
\end{gathered}
$$

Hence $y^{\prime}=\frac{2 x y}{3 y-x^{2}}$

